

High-End Gleitlagertechnik

Hochleistungslager für höchste Ansprüche

Carl Hirschmann GmbH

Carl Hirschmann - the precision benchmark

Wir sind der führende Hersteller in der Gleitlagertechnik mit einem ausgereiften Engineering.
Projektbezogene Forschung und Entwicklung, eigene Prüfstandsverfahren und eine hohe Fertigungstiefe finden Sie bei uns aus einer Hand. Bereits unser Standardsortiment deckt ein breites Spektrum ab: Wartungsfreie Lager, Aluminium-Titan-Leichtbaulager, Traggelenke, Führungsgelenke, Fahrwerksgelenke, Radial- und Axiallager. Darüber hinaus konstruieren und produzieren wir exakt nach Ihren Vorgaben individuelle Hochleistungs-Gelenklager und Gelenkköpfe.

Die enge Abstimmung mit Ihnen garantiert perfekte Ergebnisse auch für komplexe Herausforderungen. Unsere Spezialität ist der Leichtbau auch für extreme Zug- und Druckbelastungen. Profitieren Sie von unserem Know-how im Automobilbau, in der Luft- und Raumfahrt, für Gleisfahrzeuge und in weiteren Branchen. Mit unserer Gleitlagertechnik verschaffen Sie sich unschlagbare Vorteile im globalen Wettbewerb.

Poleposition in der Gleitlagertechnik

Im Leichtbau halten wir seit Jahren die Spitzenposition. Unsere Hochleistungs-Gelenklager und Gelenkköpfe überzeugen durch maximale Belastbarkeit bei minimalem Gewicht. Mit großer Leidenschaft und tiefgreifendem Fachwissen entwickeln und fertigen wir richtungsweisende Gleitlagertechnik

für Ihre anspruchsvollen Herausforderungen. Als Innovationstreiber der Branche begeistern wir durch High-Performance-Lösungskompetenz und fortschrittliche konzeptionelle Ansätze.

Inhaltsverzeichnis

Auswahlrichtlinien	4-5
Technische Hinweise	6-7
Überprüfung der Lagergröße	8-9
Ermittlung der Lagergröße / Berechnungsbeispiele	10-11
Standard-Gleitlager und -Gelenkköpfe	13
Nachschmierbare Standard-Gelenkköpfe mit Innengewinde	14
Nachschmierbare Standard-Gelenkköpfe mit Außengewinde	15
Wartungsfreie Standard-Gelenkköpfe mit Innengewinde	16
Wartungsfreie Standard-Gelenkköpfe mit Außengewinde	17
Nachschmierbare Performance-Gelenklager	18
Wartungsfreie Performance-Gelenklager	19
Nachschmierbare High-Performance-Gelenklager	20
Wartungsfreie High-Performance-Gelenklager	21
Wartungsfreie Hochleistungs-Gelenklager in Zollabmessungen	22
Abgedichtete Gelenkköpfe und Gelenklager	23
Gewindebolzen	24
Gleitlagertechnik für Motorsport	27
Wartungsfreie High-Performance Gelenkköpfe	28
Wartungsfreie High-Performance Gelenklager	29
Wartungsfreie High-Performance Aluminium-Titan-Leichtbaulager	30
Höchstleitungs-Leichtbaulager	31
Einrollwerkzeuge für Lager mit V-Nut	32
Trag- und Führungsgelenke / Ball Joints	35
Trag- und Führungsgelenke	36
Einbauvarianten	37
Weitere Informationen	
Anfrageformular – Gelenkköpfe und Gelenklager	38
Anfrageformular – Doppelgelenklager	39
Anwendungsbeispiele / Allgemeines	41
Vertrieb und Beratung Carl Hirschmann GmbH / Vertretungen – Deutschland / Europa	42-43

Auswahlrichtlinien

Standard Gleitlager

Bauart		Serie	Ausführung	Anwendungsmerkmale	Seite
+		SFC SMC SSC	Nachschmierbare Standard- Gelenkköpfe, -Gelenklager Gleitpaarung: Stahl/Hochleistungsbronze, mit feinstgedrehten Lager- schalen mit extrem hoher Gleitflächenanpassung.	Für universelle Einsatzbedingungen, bei hohen Wechsel- und Stoßbelastungen in radialer und axialer Richtung. Geeignet für große Schwenk- bewegungen. V _{max} = 60 m/min.	14-15 18
		SFCP SMCP SSCP	Wartungsfreie Standard- Gelenkköpfe, -Gelenklager Gleitpaarung: Stahl/PTFE- Bronzegewebe. Die Gleit- folie ist in die Lagerschalen eingeklebt, deshalb hohe Lebensdauer.	Für universelle Einsatzbedingungen, bei hohen konstanten Belastungen, geringen Wechsel- und Schwellbelastungen in axialer und radialer Richtung. Bei schwierigen schmiertechnischen Bedingungen, hohen Gleitgeschwindigkeiten und Schwenkbewegungen. V _{max} = 60 m/min.	16-17 19
	+	SC SCP	Nachschmierbare bzw. wartungsfreie Hochleistungs-Gelenklager ohne Stahl-Außenring Gleitpaarung: Stahl/Hochleistungsbronze Stahl/PTFE-Bronzegewebe	Analog den nachschmierbaren und wartungsfreien Hochleistungs- Gelenkköpfe und Gelenklager	20-21
+	-	SCDZ SCDZV	Wartungsfreie Hochleistungs-Gelenklager in Zollabmessungen Gleitpaarung: Stahl/PTFE-Edelstahlgewebe mit und ohne V-Nut.	Analog den wartungsfreien Hochleistungs-Gelenklagern.	22
		2RS	Abgedichtete Gelenkköpfe, Gelenklager Hochleistungs- und wartungsfreie Gelenkköpfe und Gelenklager der Größen 8–30 können mit austausch- baren Dichtmanschetten geliefert werden.	Einsatz unter rauen Umwelt- bedingungen (Schmutz, Staub, Spritzwasser usw.). Nicht für Automotive.	23
		W	Gewindebolzen für Gelenkköpfe und Gelenklager Hochleistungs- und wartungs- freie Gelenkköpfe und Gelenk- lager der Größen 5–16 und 20 können ab Lager mit einge- nieteten Gewindebolzen geliefert werden.	Einsatz als Winkelgelenke	24

Auswahlrichtlinien

Motorsport Gleitlager

Bauart	Serie	Ausführung	Anwendungsmerkmale	Seite
	SMHP	Wartungsfreie High-Performance Gelenkköpfe Gleitpaarung: Stahl/PTFE-Edelstahlgewebe	Für anspruchsvollere Anwendungen, hauptsächlich im Motorsport. Das Außenteil und der Innenring sind aus korrosionsbeständigem Werkstoff hergestellt.	28
+	SCHP	Wartungsfreie High-Performance Gelenklager Gleitpaarung: Stahl/PTFE-Edelstahlgewebe	Für anspruchsvollere Anwendungen, hauptsächlich im Motorsport. Das Außenteil und der Innenring sind aus korrosionsbeständigem Werkstoff hergestellt.	29
+	SCHPV	Wartungsfreie High-Performance Gelenklager mit V-Nut Gleitpaarung: Stahl/PTFE-Edelstahlgewebe	Analog Serie SCHP, jedoch mit V-Nut zur axialen Sicherung durch Einrollen.	29
++-	SACAIT	Wartungsfreie High- Performance Aluminium- Titan Leichtbaulager Gleitpaarung: Titan/PTFE-Edelstahlgewebe	Gelenklager für Leichtbau- anwendungen (z.B. im Motorsport).	30
+	SCHPIT	Höchstleistungs- Leichtbaulager Gleitpaarung: Titan/PTFE-Edelstahlgewebe	Gelenklager mit einem einzigartigen Last-Gewichtsverhältnis für höchst- anspruchsvolle Leichtbauanwendungen bei hohen zu übertragenden Kräften.	31

Trag- und Führungsgelenke

Bauart	Serie	Ausführung	Anwendungsmerkmale	Seite
	STCD STCDIX	Performance Traggelenke Gleitpaarung: Stahl/PTFE-Edelstahlgewebe High-Performance Traggelenke hochfester Kugelzapfen ermöglicht eine gesteigerte Kraftübertragung in radialer Richtung.	Trag- und Führungsgelenke für Rennfahrzeuge, GT-Straßenfahrzeuge, Sonderschutzfahrzeuge und weitere anspruchsvolle Anwendungen.	36

Technische Hinweise

Lagerspiel

Unter Lagerspiel oder Lagerluft versteht man das Maß, um das sich der Innenring innerhalb der Lagerschalen in radialer oder axialer Richtung in nicht eingebautem und ungefettetem Zustand verschieben lässt. Gelenkköpfe und Gelenklager werden entsprechend der Gleitpaarung und der Lagergröße mit unterschiedlichem Lagerspiel hergestellt, das in den Tabellen aufgeführt ist.

Beim Einbau von Gelenklagern ist zu beachten, dass das Lagerspiel, aufgrund möglicher Toleranzüberschneidungen (Lagerdurchmesser zur Gehäusebohrung), unter Umständen bis Null reduziert werden kann.

Empfohlene **Toleranz-Gehäusebohrung** bei Stahl ist M7. Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

Unter Umständen muss das Gelenklager ohne Vorpressung eingebaut werden. Sicherung durch Sicherungsring oder Verklebung.

Die Messbelastung beträgt 100 N.

Lagerspiel bei geschmierter Ausführung (besser als Norm). (bei Raumtemperatur)

Größe	C2		•	Radialspiel in µm Normal		C3	
	min	max	min	max	min	max	
2- 4	-	-	10	30	_	-	
5- 8	5	10	10	30	30	60	
10-14	10	20	20	40	40	80	
16-20	15	25	30	50	50	100	
22-30	20	30	40	60	60	120	
35-50	40	60	60	90	90	150	

Lagerspiel bei wartungsfreier Ausführung (bei Raumtemperatur)

			Radialsp	iel in µm		
Größe	C	2	Nor	mal	C	23
	min	max	min	max	min	max
2- 4	-	-	2	4	-	-
5-30	-	-	5	10	10	20
35-50	-	-	10	20	20	40

Das Axialspiel beträgt das 2–3 fache des Radialspiels, bei gleicher Messbelastung (gemessen bei Raumtemperatur). Abb. 2

Abb. 1

Auswahl des Lagerspiels

Geschmierte Ausführung

Liegen keine besonderen Gründe für ein verringertes Lagerspiel nach C2 vor, sollte unbedingt das Radialspiel »Normal« gewählt werden. Dieses Lagerspiel bietet bei hohem Lager-Traganteil die beste Schmierfettverteilung. Ohne besondere Bestellangaben werden alle Gelenkköpfe und Gelenklager mit Radialspiel »Normal« geliefert.

Wartungsfreie Ausführung

Diese Ausführung zeichnet sich durch geringes Lagerspiel und einen hohen Traganteil aus. Ohne besondere Bestellangaben wird die wartungsfreie Ausführung mit dem Radialspiel »Normal« geliefert.

Soll beim Einsatz von mehreren Gelenkköpfen oder Gelenklagern das Gesamtreibmoment gering gehalten werden, sind Lager mit einem Radialspiel entsprechend C3 zu verwenden.

Berücksichtigung der Umgebung

Beim Einsatz in feuchter Umgebung ist es empfehlenswert eine rostfreie bzw. eine abgedichtete Ausführung einzusetzen. Entsprechend dem Einzelfall liefern wir die Lager in folgenden Sonderausführungen:

> rost- und säurefest hochtemperaturfest tieftemperaturfest u.a.m.

Schmierung

Die nachschmierbaren Gelenkköpfe und Gelenklager werden ungefettet geliefert. Als Schmierfette empfehlen wir korrosionsschützende, druckfeste Fette auf Lithium-Basis oder Lithium-Komplex-Metallseifenfette (Mehrzweck-Wälzlagerfette) für den Temperaturbereich von –20° C bis +125° C. Bei höheren Temperaturen muss ein Hochtemperaturfett, unter –20° C ein Tieftemperaturfett verwendet werden.

Erst- und Nachschmierung, Schmierfristen

Bei rauhem Betrieb und hoher Belastung ist kurz nach Inbetriebnahme eine Temperaturkontrolle empfehlenswert. Sollte nach einer Einlaufzeit von ca. 1 Betriebstunde ein Temperaturanstieg um 25° C auftreten, ist sofort nachzuschmieren. In jedem Falle ist eine periodische Nachschmierung erforderlich.

Gelenkköpfe und Gelenklager die wechselseitig belastet werden, benötigen kürzere Schmierfristen als nur einseitig belastete Lager. Die Schmierfristen sind immer vom Einzelfall und den Umgebungsbedingungen abhängig.

Für die Mindestschmierfristen gelten folgende Richtwerte:

Bei einseitiger Lastrichtung

 $t = \frac{G_h}{30}$

Bei wechselnder Lastrichtung

 $t = \frac{G_h}{130}$

t = die Schmierfrist in Betriebsstunden.

G_h = die Gebrauchsdauer in Betriebsstunden (siehe Seite 9)

Eine noch häufigere Nachschmierung bringt keinen Vorteil, weil dadurch das hydrodynamische Gleichgewicht an der Gleitfläche zerstört werden kann.

Bei Nichteinhaltung der Nachschmierfristen ist mit einem Bruchteil der Gebrauchsdauer zu rechnen.

Die Gelenkköpfe mit Innengewinde sind ab Größe 5 und mit Außengewinde ab Größe 6 mit Trichterschmiernippeln nach DIN 3405 ausgerüstet. Andere Schmiernippel montieren wir auf Wunsch.

Bei der wartungsfreien Ausführung wird während der Einlaufphase ein geringer Teil des PTFE von der Gleitfolie auf den Innenring übertragen. Es entsteht ein Glättungseffekt. Das führt zur Verminderung der Reibung und trägt zur Erhöhung der Gebrauchsdauer bei. Ein Fett- oder Ölfilm verhindert den Glättungseffekt. Deshalb empfehlen wir die ungeschmierte Anwendung.

Technische Hinweise

Betriebstemperatur

Ohne Einschränkung können alle Ausführungen im Temperaturbereich von –30° C bis +120° C eingesetzt werden. Zunehmende Betriebstemperatur vermindert die Lagertragfähigkeit und damit die Gebrauchsdauer. Bei nachschmierbaren Gelenkköpfen und Gelenklagern hängt die Einsatzmöglichkeit bei hohen Temperaturen weitestgehend davon ab, ob das verwendete Hochtemperaturschmierfett bei hohen Betriebstemperaturen ausreichende Schmierfähigkeit bietet. Kurzzeitig können diese Ausführungen, bei verringerter Belastung und entsprechender Schmierung bei Temperaturen bis +250° C eingesetzt werden.

Die wartungsfreien Lager können im Temperaturbereich von –50° C bis +150° C eingesetzt werden (auf Verringerung bzw. Vergrößerung des Lagerspiels achten).

Bei abgedichteten Gelenkköpfen und Gelenklagern werden Dichtmanschetten aus Fluorelastomer-Kautschuk (FKM), bis +250° C eingesetzt.

Reibmoment M

Das Reibmoment für Gelenkköpfe und Gelenklager errechnet sich aus folgender Gleichung:

$$M = 5 \cdot 10^{-4} \cdot \mu \cdot P \cdot K$$

M = Reibmoment [Nm] $\mu = Reibwert der Gleitfläche$ P = dynamisch äquivalente Lagerlast [N]

K = Innenring-Durchmesser [mm]

Richtwerte für den Reibwert µ

$Reibwert\,\mu$

Lagerart	min	max
geschmiert	0,08	0,15
wartungsfrei	0,03	0,10

Abb. 3

Die niedrigen Reibwerte gelten für hohe Belastungen (p = $80-100 \text{ N/mm}^2$) bei geringen Gleitgeschwindigkeiten (v = 5-10 m/min). Die hohen Reibwerte gelten für geringe Belastungen (p = $5-10 \text{ N/mm}^2$) bei hohen Gleitgeschwindigkeiten (v = 30-60 m/min).

p = spezifische Flächenpressung [N/mm²] v = Gleitgeschwindigkeit in der Gleitfläche [m/min]

Tragzahlen Die dynamische Tragzahl C

Die dynamische Tragzahl C ist ein Kennwert für die Berechnung der Gebrauchsdauer von Gelenkköpfen und Gelenklagern, die dynamisch beansprucht werden, d. h. unter Belastung Kipp-, Schwenk- oder Drehbewegungen auszuführen haben.

Der dynamischen Tragzahl C liegen die in der Tabelle angegebenen Werte der spezifischen Flächenpressung $k_{\rm c}$ zugrunde:

Lagerart	spezifische Flächenpressung k _c
	[N/mm ²]
geschmiert	50
wartungsfrei	150

Abb. 4

Die statische Tragzahl C

Die statische Tragzahl C_o stellt die max. zulässige Belastung dar, bei der keine bleibende Verformung der Gleitfläche oder des Außenteiles auftritt. Beim Gelenklager müssen die umgebenden Bauteile so ausgelegt sein, dass sie eine Verformung des Lagers verhindern.

Bei Gelenkköpfen entspricht C_o der auf den schwächsten Querschnitt bezogenen zulässigen Belastung, die aus der Streckgrenze des Außenteilwerkstoffes, **mit einem**

Sicherheitsfaktor von 1,2 resultiert. Die Bruchlast beträgt mindestens das 1,5-fache von C_..

Die axiale Belastbarkeit

Die axiale Belastbarkeit der Gelenkköpfe und der Gelenklager wird durch die axiale Befestigung der Lagerschalen (eingebördelt), bzw. durch den Schaft mit Außengewinde des Außenteiles begrenzt.

Beim Gelenklager ohne Stahlaußenring (Typ SC... und SCP..) muss darauf geachtet werden, dass die axiale Abstützung der Lagerschalen, die in der Tabelle (Abb. 5) angegebenen Kräfte sowohl statisch als auch dynamisch aufnehmen kann.

Die max. zulässige axiale Belastung errechnet sich nach den in der Tabelle angegebenen Werten.

Hochleistungs- und	Zulässige Axia	lbelastung
wartungsfreie	dynamisch	statisch
Baureihe	F _{azul.} [N]	F _{a zul.} [N]
SFC/SMC/SSC SFRC/SMRC/SSRC	0,06 · Co	0,3 · Co
SFXC/SMXC/SC	0,04 · Co	0,2 · Co

Abb. 5

Überprüfung der Lagergröße

Für die Überprüfung einer Lagergröße auf die dynamische und statische Tragfähigkeit, muss das Lager nach folgenden Kriterien untersucht werden:

- Konstante dynamische Belastung
- Veränderliche dynamische Belastung
- Statische Belastung

Die äquivalenten Lagerlasten werden aus ${\rm F_{\scriptscriptstyle r}}$ und ${\rm F_{\scriptscriptstyle a}}$ errechnet.

Dynamische Belastung

Der Innenring führt gegenüber der Lagerschale eine Schwenk- oder Drehbewegung aus.

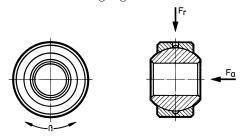


Abb. 6

Konstante dynamische Belastung

Für Gelenkköpfe und Gelenklager mit konstanter dynamischer Belastung wird die dynamisch äquivalente Lagerlast P wie folgt berechnet:

$$P = F_r + Y \cdot F_a$$
 [N

Es muss erfüllt sein: $F_a \le F_{a,zul.}$ $F_{a,zul.}$ nach Tabelle (Abb. 5)

Der Axialfaktor Y wird der nachstehenden Tabelle (Abb. 7) entnommen. Zwischenwerte können linear interpoliert werden.

Last- <u>F</u> verhältnis F,	0,1	0,2	0,3	0,4	0,5	> 0,5
Axial- Y faktor	0,8	1	1,5	2,5	3	nicht geeignet

Abb. 7

Mit dem errechneten Wert für P wird das Belastungsverhältnis $f_c = \frac{C}{p}$ gebildet und mit den Werten der Tabelle (Abb. 8) verglichen. Unterhalb des Grenzwertes kann das Lager überlastet werden.

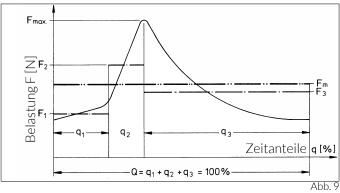
P wird auch für die Berechnung der Gebrauchsdauer benötigt.

Lagerart	$f_c = \frac{C}{P}$ (unterster Grenzwert)
geschmiert wartungsfrei	0,5 1.0
wartungsirei	1,0

Abb. 8

Veränderliche dynamische Belastung

Für Gelenkköpfe und Gelenklager mit veränderlicher radialer dynamischer Belastung wird die mittlere dynamische Lagerlast F_m aus den einzelnen Laststufen F_1 , F_2 ... F_n und den zugehörigen Zeitanteilen q_1 , q_2 ... q_n , beispielsweise für 3 Laststufen, wie folgt berechnet: (Abb. 9)

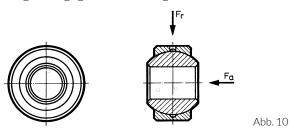

$$F_{m} = \sqrt{\frac{F_{1}^{2} \cdot q_{1} + F_{2}^{2} \cdot q_{2} + F_{3}^{2} \cdot q_{3}}{Q}} \quad [N]$$

Die dynamische Lagerlast beträgt:

 $P = F_m [N]$

Wirkt zusätzlich eine konstante Axialbelastung, so wird P wie folgt berechnet:

$$P = F_m + Y \cdot F_a \quad [N]$$


Zusätzlich ist F_{max} auf die statische Sicherheit zu überprüfen.

$$F_{\text{max}} \leq P_{\text{zul.}}$$
 [N]

Für P_{zul} gilt der Abschnitt »Zulässige Belastung«.

Statische Belastung

Der Innenring steht gegenüber der Lagerschale still.

Für Gelenkköpfe und Gelenklager mit statischer Belastung wird die statisch äquivalente Lagerlast P_o wie folgt berechnet:

 $P_o = F_r + Y \cdot F_a$ [N

Es muss erfüllt sein: F., al nach Tabelle (Abb. 5) $F_a \leq F_{a zul.}$ [N]

Der Axialfaktor Y wird der Tabelle (Abb. 7) entnommen.

 P_{\circ} muss $\leq P_{zul}$ sein. Für P_{zul} gilt der Abschnitt »Zulässige Belastung«.

Zulässige Belastung P...

Gelenkköpfe:

Gelenklager:

$$P_{zul.} = C_o \cdot b_2 \cdot b_4$$

 $P_{zul.} = C_o \cdot b_2$

[N] [N]

P_{zul.} = die zulässige Belastung C_o = die statischeTragzahl

b₂ = Temperaturfaktor aus Tabelle (Abb. 12)

b₄ = Belastungsfaktor nachTabelle (Abb. 11)

Überprüfung der Lagergröße

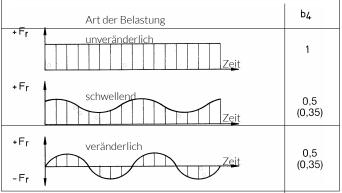


Abb. 11

Die Klammerwerte gelten für Gelenkköpfe mit Außengewinde und Schmiernippel oder mit Schmierbohrung.

Es muss erfüllt sein:

$$P\underline{\leq}P_{\text{zul.}}$$

bzw.

$$P_{o} \leq P_{zul.}$$

Achtung: Die in Abb. 11 angegebenen Belastungsfaktoren b4 zur Ermittlung der zulässigen Belastung P_{zul} bei Gelenkköpfen sind Erfahrungswerte für übliche Anwendungen. Im Falle einer Auslegung der Gelenkkopfaußenteile auf Dauerfestigkeit sprechen Sie uns bitte an, ggf. sind praktische Versuche erforderlich.

Gebrauchsdauer

Die Gebrauchsdauer eines Gelenkkopfes bzw. Gelenklagers ist von mehreren, teilweise schwer erfassbaren, Faktoren abhängig. Deshalb ist eine genaue Berechnung nicht möglich. Das nachfolgend beschriebene Berechnungsverfahren, das durch Prüfstandversuche mehrfach bestätigt wurde, ergibt eine relativ gute Ermittlung der Gebrauchsdauer. Einflüsse wie Schläge, Vibrationen, Verschmutzungen, usw. werden nicht berücksichtigt. Dieser Berechnung liegt ein Gesamtverschleiß der Gleitflächen von 0,3% des Innenringdurchmessers zugrunde. Der Reibwert der Gleitfläche steigt dabei auf ca. 0,25 an.

 $G_h = \frac{b_1 \cdot b_2 \cdot b_3}{k \cdot \beta \cdot f} \cdot 10^7 \cdot \frac{C}{P}$

 G_h = Gebrauchdauer [h] C = dynamische Tragzahl [N]

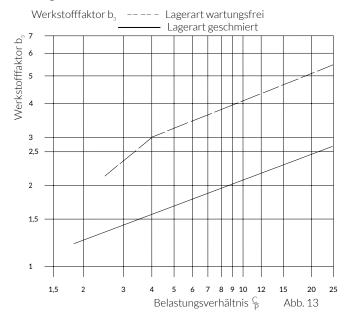
P = dynamisch äquivalente Lagerlast [N]

 $\begin{array}{ll} \mathsf{K} &= \mathsf{Innenring\text{-}Durchmesser} & [\mathsf{mm}] \\ \mathcal{B} &= \mathsf{Schwenkwinkel} \geq 1 & [\mathsf{Grad}] \end{array}$

(bei Drehbewegung ist $\beta = 180^{\circ}$ einzusetzen)

f = Schwenkfrequenz

[min⁻¹]


b₁ = Lastrichtungsfaktor (Abb.12) b₂ = Temperaturfaktor (Abb.12)

b₃ = Werkstofffaktor (Abb.13)

Betriebs- faktoren	Lastrichtungs- faktor b ₁			Temper	aturfak b ₂	tor	
	Lastrichtung		Temperatur [° C]			[C]	
Lagerart	ein- seitig	wechsel- seitig	80	100	150	200	250
geschmiert	1	2,5	1	1	1	0,8	0,5
wartungsfrei	1	0,3	1	1	0,8	0,5	0,3

Abb. 12

Bei sehr niedrigen Belastungen und/oder Gleitgeschwindigkeiten ergeben sich relativ hohe rechnerische Gebrauchsdauerwerte. In der Praxis können jedoch bei langer Gebrauchsdauer Umgebungseinflüsse zunehmend an Bedeutung gewinnen und zu Abweichungen von den rechnerischen Ergebnissen führen.

Wird die gewünschte Gebrauchsdauer nicht erreicht, muss mit der nächsten Lagergröße die Berechnung wiederholt werden.

Kontrolle der Gleitflächen auf Überhitzung Zulässige Gleitgeschwindigkeit

Die zulässige Gleitgeschwindigkeit ist im wesentlichen von der auftretenden Flächenpressung, der Gleitpaarung, der Schmierung und einer eventuellen Kühlung abhängig. Die im Lager entstehende Wärme verhält sich proportional zu dem Produkt aus Flächenpressung und Gleitgeschwindigkeit. Bei Überprüfung der Lagergröße ist daher der p·v-Wert zu ermitteln und mit dem zulässigen Wert (Abb. 14) zu vergleichen. Ebenso ist das Lager auf die Gleitgeschwindigkeit zu überprüfen

Um eine Überhitzung zu vermeiden, muss erfüllt sein:

$$\mathbf{p} \cdot \mathbf{v} \leq (\mathbf{p} \cdot \mathbf{v})_{\text{zul.}}$$
 $\left[\frac{N}{\text{mm}^2} \cdot \frac{m}{\text{min.}}\right]$

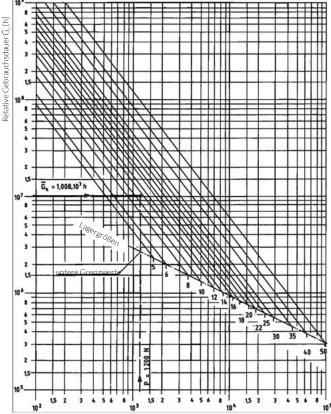
V≦V_{zul.}

p = Flächenpressung = $kc \cdot \frac{P}{C}$ [N/mm²] kc = spezifische Flächenpressung (Abb. 4) [N/mm²]

= mittlere Gleitgeschwindigkeit = $1,745 \cdot 10^{-5} \cdot \text{K} \cdot \beta \cdot \text{f}$ [m/min]

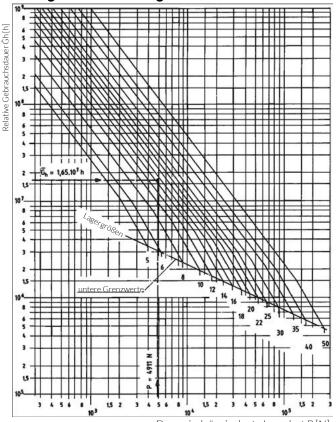
Richtwerte für den zulässigen p · v-Wert

Lagerart	(p·v) _{zul.} N m mm ² min.	Zul. Gleitgeso v _{zul.} [m/min]	•
		Schwenkung	Drehung
geschmiert	30	15	60


Abb.14

[m/min]

the **precision** benchmark


Ermittlung der Lagergröße

Geschmierte Ausführung

Dynamisch äquivalente Lagerlast P [N]

Wartungsfreie Ausführung

Dynamisch äquivalente Lagerlast P [N]

Durch Einführung der relativen Gebrauchsdauer G, als Hilfsgröße, kann ein Zusammenhang zwischen der relativen Gebrauchsdauer und der dynamisch äquivalenten Lagerlast grafisch dargestellt werden.

Für die relative Gebrauchsdauer gilt folgende Gleichung:

$$\bar{G}_h = G_h \cdot \frac{\beta \cdot f}{b_1 \cdot b_2}$$

 \bar{G}_h = relative Gebrauchsdauer

 G_h = geforderte Gebrauchsdauer β = Schwenkwinkel [h]

[Grad] f = Schwenkfrequenz [min-1]

b₁ = Lastrichtungsfaktor (Abb. 12)

b₂ = Temperaturfaktor (Abb. 12)

Beispiel

Gesucht wird ein Gelenkkopf mit Außengewinde für folgende Betriebsbedingungen:

Wechselnde dynamische Belastung F, 1200 N Schwenkwinkel & 30° Schwenkfrequenz f 120 min⁻¹ Betriebstemperatur 50° C Geforderte Gebrauchsdauer G 7000 h

Da eine wechselnde Belastung vorliegt, wird entsprechend dem Abschnitt »Auswahlrichtlinien« (Seite 5) eine geschmierte Ausführung empfohlen. Aus Abb. 12 ergibt sich damit für $b_1 = 2.5$ und $b_2 = 1$.

Dynamisch äquivalente Lagerlast:

 $P = F_r = 1200 N$

Relative Gebrauchsdauer:

$$\bar{G}_h = G_h \cdot \frac{\beta \cdot f}{b_1 \cdot b_2} = 7000 \cdot \frac{30 \cdot 120}{2,5 \cdot 1} = 10,08 \cdot 10^6 \,\text{h}$$

Der Schnittpunkt in Abb. 15 mit P = 1200 N und G_b = 10,08 · 10⁶ h ergibt die Lagergröße 12. Gewählt wird SMC 12.

Die Überprüfung des Gelenkkopfes SMC 12 bezüglich der zulässigen Belastung P_{zul} und der Gebrauchsdauer G
_b, sowie Überprüfung der Gleitfläche auf Überhitzung und Ermittlung der Schmierfristen, erfolgt wie in Beispiel 1, Seite 11, gezeigt.

Das in Abb. 16 eingezeichnete Beispiel zeigt das Ergebnis des Berechnungsbeispieles 2, Seite 11.

Berechnungsbeispiele

Beispiel 1

Der Transporthebel an einer Verpackungsmaschine soll über einen Gelenkkopf bewegt werden. Konstruktiv erwünscht ist ein Gelenkkopf der Größe 12.

Konstruktiv vorgegebene Werte:

Wechselnde konstante dynamische Radial-

belastung F 1200 N Schwenkwinkel & 30° Schwenkfrequenz f 120 min⁻¹ 50° C Betriebstemperatur

Da eine wechselnde konstante Belastung vorliegt, wird eine geschmierte Ausführung empfohlen, z. B. SMC 12.

Katalogwerte:

Dynamische Tragzahl C 13400 N Statische Tragzahl C 17000 N Innenring Ø K 22,225 mm

Forderungen an den Gelenkkopf SMC 12:

- 1. Radialbelastung F, muss kleiner als die zulässige Belastung P_{zul} sein um bleibende Deformation zu vermeiden.
- 2. Die Gebrauchsdauer G, erf. soll mindestens 6000 Betriebsstunden betragen.

Berechnung:

Dynamisch äquivalente Lagerlast P:

$$P = F_r + Y \cdot F_a$$
 $\left| \frac{F_a}{F_r} \right| = \frac{0}{1200} = 0 \left| Y = 0 \right|$
 $P = F_r = 1200 \text{ N}$

Zulässige Gelenkkopfbelastung P_{zu}:

$$P_{zut.} = C_o \cdot b_2 \cdot b_4 \mid b_2 = 1 \text{ (nach Abb. 12)}$$

 $b_4 = 0,35 \text{ (nach Abb. 11)}$

$$P_{zul.} = 17000 \cdot 1 \cdot 0,35 = 5950 \text{ N}$$

$$P = 1200 N < P_{zul.} = 5950 N$$

(Forderung 1 erfüllt)

Ermittlung der Gebrauchsdauer G.:

$$\begin{split} G_h &= \frac{b_1 \cdot b_2 \cdot b_3}{K \cdot \mathcal{J}_S \cdot f} \cdot 10^7 \cdot \frac{C}{P} \quad [h] \\ b_1 &= 2,5 \; (Abb. \, 12) \\ b_2 &= 1 \; (Abb. \, 12) \\ b_3 &= 2,1 \; (Abb. \, 13) \quad \Big| \frac{C}{P} = \frac{13400}{1200} = 11,1 \end{split}$$

$$G_h = 7200 \text{ h} > G_{h.erf.} = 7000 \text{ h}$$
 (Forderung 2 erfüllt)

Kontrolle der Gleitfläche auf Überhitzung:

$$p = k_c \cdot \frac{P}{C} \quad [N/mm^2]$$

 $k_c = 50 \text{ N/mm}^2 \text{ (nach Abb. 4)}$

$$\frac{P}{C} = \frac{1200}{13400} = \frac{1}{11,1} = 0,089$$

 $p = 50 \cdot 0.089 \text{ N/mm}^2 = 4.45 \text{ N/mm}^2$

 $v = 1,745 \cdot 10^{-5} \cdot K \cdot \beta \cdot f = 1,745 \cdot 10^{-5} \cdot 22,225 \cdot 30 \cdot 120 \text{ m/min}$

 $\begin{array}{l} v = 1,4 \text{ m/min} < v_{zul} = 15 \text{ m/min} \text{ (nach Abb. 14)} \\ p \cdot v = 4,45 \cdot 1,4 = 6,23 < (p \cdot v)_{zul} = 30 \text{ (Abb. 14)} \end{array}$

Keine Überhitzung

Schmierfrist:

$$t = \frac{G_h}{130} = \frac{7200}{130} = 55 \text{ h}$$

Beispiel 2

Über einen doppelt wirkenden Pneumatik-Zylinder wird ein Hebel einer Abfüllanlage bewegt. Es soll ein wartungsfreier Gelenkkopf mit Anschlussmaßen nach CETOP festgelegt werden.

Konstruktiv vorgegebene Werte:

Veränderliche, schwellende radiale dynamische Belastung $F_1 = 2000 \text{ N}, \quad F_2 = 6000 \text{ N}, \quad F_3 = 3000 \text{ N}, \quad F_{\text{max}} = 8000 \text{ N}$

 $q_1 = 20\%, q_2 = 15\%, q_3 = 65\%$

Konstante Axialbelastung Fa 1000 N Schwenkwinkel & 25° Schwenkfrequenz f 60 min⁻¹

Betriebstemperatur

Forderungen an den Gelenkkopf:

- 1. Die dynamisch äguivalente Lagerlast P und die statisch äguivalente Lagerlast P. müssen kleiner sein als die zulässige Belastung P.
- 2. Die Gebrauchsdauer $G_{h, ert}$ soll mindestens 11000 Betriebsstunden betragen.

Berechnung:

Mittlere dynamische Lagerlast F..:

$$F_{m} = \sqrt{\frac{F_{1}^{2} \bullet q_{1} + F_{2}^{2} \bullet q_{2} + F_{3}^{2} \bullet q_{3}}{Q}}$$

$$F_{m} = \sqrt{\frac{2000^{2} \cdot 20 + 6000^{2} \cdot 15 + 3000^{2} \cdot 65}{100}} = 3471 \text{ N}$$

Dynamisch aquivalente Lagerlast P:

P = F_m + Y · F_a
$$| \frac{F_a}{Fm} = \frac{1000}{3471} = 0.28$$
Y = 1,44 (interpoliert nach Abb. 7)

$$P = 3471 + 1.44 \cdot 1000 = 4911 N$$

Ermittlung der relativen Gebrauchsdauer
$$\bar{G}_h$$
:
$$\bar{G}_h = G_h \cdot \frac{\beta \cdot f}{b1 \cdot b2} \qquad \begin{vmatrix} \beta = 25 \\ f = 60 \end{vmatrix} \quad b_1 = 1 \text{ (Abb. 12)}$$

$$\bar{G}_h = 11000 \cdot \frac{25 \cdot 60}{1 \cdot 1} = 16,5 \cdot 10^6 \text{ h}$$

Nach Diagramm (Abb. 16) wird ermittelt:

Gelenkkopf-Größe 16

Es wird gewählt SFCP 16 CETOP (Seite 17).

Dynamische Tragzahl C 60000 N 28500 N

Statische Tragzahl C

28,575 mm

max. 80° C

Grenzwert $f_c = \frac{C}{P} = \frac{60000}{4911} = 12,2$ (nach Abb. 8 in Ordnung)

Zulässige Gelenkkopfbelastung P...:

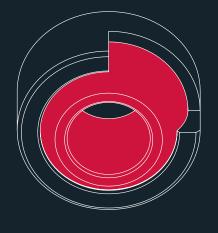
$$\begin{array}{ll} P_{zul.} = C_{\circ} \cdot b_{2} \cdot b_{4} & | \ b_{2} = 1 \ (Abb. \ 12) & | \ b_{4} = 0,5 \ (Abb. \ 11) \\ P_{zul.} = 28 \ 500 \cdot 1 \cdot 0,5 = 14 \ 250 \ N \\ P_{\circ} = F_{max} = 8000 \ N < P_{zul.} \\ P_{\circ} = 4911 \ N < P_{zul.} \end{array} \tag{Forderung 1 erfüllt)$$

Ermittlung der Gebrauchsdauer G.:

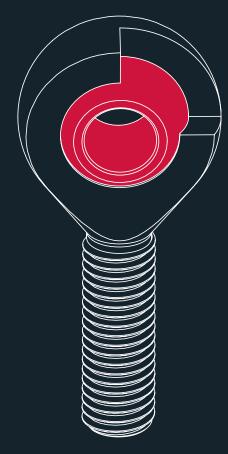
$$G_{h} = \frac{b_{1} \cdot b_{2} \cdot b_{3}}{K \cdot \beta \cdot f} \cdot 10^{7} \cdot \frac{C}{P} \qquad | b_{3} = 4,2, \text{ für } \frac{C}{P} = 12,2 \text{ (Abb. 13)}$$

$$G_{h} = \frac{1 \cdot 1 \cdot 4}{28,575 \cdot 25 \cdot 60} \cdot 10^{7} \cdot 12,2 = 11900 \text{ h}$$

$$G_{h,\text{erf}} = 11000 \text{ h} < G_{h} = 11900 \text{ h} \text{ (Forderung 2 erfüllt)}$$


Übersicht

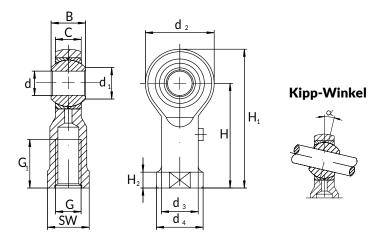
Standardausführungen


Projektgeschäfte

the precision benchmark

Standard-Gleitlager und -Gelenkköpfe

Nach DIN ISO 12240-4/12240-1


Nachschmierbare Standard-Gelenkköpfe mit Innengewinde

Gleitpaarung Stahl auf Hochleistungsbronze

Serie **SFC..**

SFXC.. (hochfestes Außenteil)

SFRC.. (korrosionsbeständiges Außenteil)

															T	ragzahlen		Kipp-	Stück-
Type	d	В	С	d,	d ₂	d ₃	$d_{\scriptscriptstyle{4}}$	Н	H₁	H_{2}	G ₁	K	G	SW	dynamisch C	statiscl	h C _° *	Winkel	Gewicht
												Kugel Ø	Gewinde			SFC/SFRC	SFXC		
SFC	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	N	N	N	α°	≈g
2	2	4,8	3,6	3,6	9	3,8	4,5	16	20,5	2,5	5,5	6,000	M2	4	900	1900		16	3
3	3	6	4,5	5,2	12	5	6,5	21	27	3	7	7,937	M3	5,5	1 500	3600/2200		15	7
4	4	7	5,25	6,5	14	6,5	8,5	24	31	3,5	9,5	9,520	M4	7	2 260	4500/2700		14	11
5	5	8	6	7,7	18	9	11	27	36	4	10	11,112	M5	9	3 250	6000	15 000	13	19
6	6	9	6,75	9,0	20	10	13	30	40	5	12	12,700	M6	11	4 300	7000	16 500	13	27
8	8	12	9	10,4	24	12,5	16	36	48	5	16	15,875	M8	14	7 200	12000	26 000	13	49
10	10	14	10,5	12,9	28	15	19	43	57	6,5	20	19,050	M10	17	10 000	14 500	35 500	13	78
12	12	16	12	15,4	32	17,5	22	50	66	6,5	22	22,225	M12	19	13 400	17 000	43 000	13	120
14	14	19	13,5	16,9	36	20	25	57	75	8	25	25,400	M14	22	17 000	24 000	51 500	15	170
16	16	21	15	19,4	42	22	27	64	85	8	28	28,575	M16	22	21 600	28 500	76 500	15	230
18	18	23	16,5	21,9	46	25	31	71	94	10	32	31,750	M18x1,5	27	26 000	40 000	92 500	15	320
20	20	25	18	24,4	50	27,5	34	77	102	10	33	34,925	M20x1,5	30	31 500	45 000	104 500	15	420
22	22	28	20	25,8	54	30	37	84	111	12	37	38,100	M22x1,5	32	38 000	52 000	125 500	15	540
25	25	31	22	29,6	60	33,5	42	94	124	12	42	42,850	M24x2	36	47 500	60000	148 000	15	740
30	30	37	25	34,8	70	40	50	110	145	15	51	50,800	M30x2	41	64000	81000	193 000	15	1165
35	35	43	30	40,4	80	49	60	125	165	20	56	59,000	M36x2	50	90 000	95 000	210 000	16	1900
40	40	49	35	44,2	90	57	69	142	187	25	60	66,000	M42x2	60	120 000	130 000	293 000	15	2850
50	50	60	45	55,9	116	65	78	160	218	25	65	82,000	M48x2	65	190 000	235 000	554000	14	4980
Toleranz	 H7	0	+0,2								+1,0		DIN 13	0					
		-0,12	-0,2								0		6 H	-0,3					

Die Größen 2, 3 und 4 sind nicht in DIN ISO 12240-4 enthalten.

*Sicherheitsfaktor von C₀ siehe Seite 7.

Material

Außenteil: Bis Größe 14 Automatenstahl 1.0715+C, ab Größe 16 Werkstoff 1.0501, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Cu Sn 8/Cu Zn 40 Al 2 CW713R Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen und poliert.

Serie SFXC.. (Lieferbar ab Größe 5)

Außenteil: Werkstoff 1.7227 vergütet, oder ähnliches Material, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Analog Serie SFC.. Innenring: Analog Serie SFC..

Serie SFRC.. (Lieferbar ab Größe 3)

Außenteil: Korrosionsbeständiger Stahl 1.4305,

ab Größe 16 geschmiedet

Lagerschalen: Analog Serie SFC..

Innenring: Analog SFC.. aber hartverchromt, auf Wunsch

korrosionsbeständig

Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,01 und 0,09 mm. Mit eingeengtem oder erweitertem Spiel siehe Seite 6. Bezeichnung z. B. Serie SFC 10 C2.

Gewinde: DIN 13 – 6 H, rechts oder links. Bei Linksgewinde Bezeichnung z. B. Serie SFLC 10. Sondergewinde auf Anfrage (Feingewinde, Zoll, etc.).

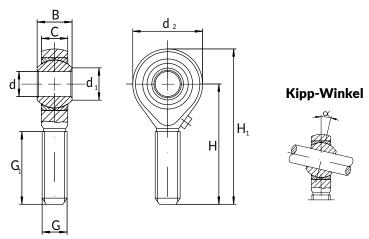
Schmiernippel: Größe 5–50 Trichterschmiernippel DIN 3405. Form D.

Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. Serie SFRC 10 IR.

Hartverchromter Innenring: Ab Größe 5 mit hartverchromtem Innenring (nur an Lauffläche) lieferbar.

Bezeichnung z. B. Serie SFC 10 IH.

Abgedichtete Ausführung: Die Größen 8–30 können mit austauschbaren Dichtmanschetten geliefert werden (siehe Seite 23).


Nachschmierbare Standard-Gelenkköpfe mit Außengewinde

Gleitpaarung Stahl auf Hochleistungsbronze

Serie SMC..

SMXC.. (hochfestes Außenteil)

SMRC.. (korrosionsbeständiges Außenteil)

												Tragzahlen		Kipp-	Stück-
Type	d	В	С	$d_{_{\scriptscriptstyle 1}}$	d ₂	Н	H₁	$G_{_{\scriptscriptstyle 1}}$	K	G	dynamisch C	statisch	C _° *	Winkel	Gewicht
									Kugel Ø	Gewinde		SMC/SMRC	SMXC		
SMC	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	N	N	Ν	α°	≈g
2	2	4,8	3,6	3,6	9	18	22,5	9	6,000	M2	900	400		16	2
3	3	6	4,5	5,2	12	27	33	15	7,937	M3	1500	1200/700		15	5
4	4	7	5,25	6,5	14	30	37	18	9,520	M4	2 260	2000/1200		14	9
5	5	8	6	7,7	18	33	42	20	11,112	M5	3 2 5 0	3 000	7 500	13	15
6	6	9	6,75	9,0	20	36	46	22	12,700	M6	4 300	4 000	10 500	13	21
8	8	12	9	10,4	24	42	54	25	15,875	M8	7 200	8 000	19 500	13	34
10	10	14	10,5	12,9	28	48	62	29	19,050	M10	10 000	13 000	30 500	13	65
12	12	16	12	15,4	32	54	70	33	22,225	M12	13 400	17 000	43 000	13	92
14	14	19	13,5	16,9	36	60	78	36	25,400	M14	17 000	24 000	51500	15	135
16	16	21	15	19,4	42	66	87	40	28,575	M16	21 600	28 500	76 500	15	215
18	18	23	16,5	21,9	46	72	95	44	31,750	M18x1,5	26 000	38 000	92 500	15	285
20	20	25	18	24,4	50	78	103	47	34,925	M20x1,5	31500	42 000	104 500	15	375
22	22	28	20	25,8	54	84	111	51	38,100	M22x1,5	38 000	52 000	125 500	15	475
25	25	31	22	29,6	60	94	124	57	42,850	M24x2	47 500	60 000	148 000	15	655
30	30	37	25	34,8	70	110	145	66	50,800	M30x2	64 000	81 000	193 000	15	1075
35	35	43	30	40,4	80	140	180	85	59,000	M36x2	90 000	95 000	210 000	16	1830
40	40	49	35	44,2	90	150	195	90	66,000	M42x2	120 000	130 000	293 000	15	2600
50	50	60	45	55,9	116	185	243	105	82,000	M48x2	190 000	235 000	554 000	14	5000
Toleranz	H7	0	+0,2					+1,0		DIN 13					
.01014112		-0,12	-0,2					0		6 g					

Die Größen 2, 3 und 4 sind nicht in DIN ISO 12240-4 enthalten.

*Sicherheitsfaktor von C_0 siehe Seite 7.

Material

Serie SMC..

Außenteil: Bis Größe 14 Automatenstahl 1.0715+C, ab Größe 16 Werkstoff 1.0501, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Cu Sn 8/Cu Zn 40 Al 2 CW713R **Innenring:** Wälzlagerstahl 1.3505, gehärtet, geschliffen

und poliert.

Serie SMXC.. (Lieferbar ab Größe 5)

Außenteil: Werkstoff 1.7227 vergütet, oder ähnliches Material, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Analog SMC... **Innenring:** Analog SMC...

Serie SMRC.. (Lieferbar ab Größe 3)

Außenteil: Korrosionsbeständiger Stahl 1.4305,

ab Größe 16 geschmiedet. **Lagerschalen:** Analog SMC...

Innenring: Analog SMC.. aber hartverchromt, auf Wunsch

korrosionsbeständig

Ausführung

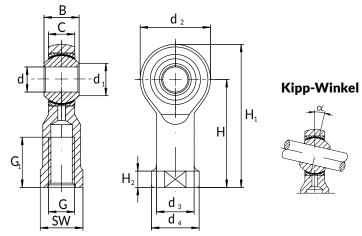
Lagerspiel: Je nach Größe radial zwischen 0,01 und 0,09 mm. Mit eingeengtem oder erweitertem Spiel siehe Seite 6. Bezeichnung z. B. SMC 10 **C2**.

Gewinde: DIN 13 – 6 g, rechts oder links. Bei Linksgewinde Bezeichnung z. B. SM**L**C 10. Sondergewinde auf Anfrage. **Schmiernippel:** Größe 6–50 Trichterschmiernippel DIN 3405, Form D.

Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. SMRC 10 **IR**.

Hartverchromter Innenring: Ab Größe 5 mit hartverchromtem Innenring (nur an Lauffläche) lieferbar. Bezeichnung z. B. SMC 10 **IH**.

Abgedichtete Ausführung: Die Größen 8–30 können mit austauschbaren Dichtmanschetten geliefert werden (siehe Seite 23).


Wartungsfreie Standard-Gelenkköpfe mit Innengewinde

Gleitpaarung Stahl auf PTFE-Bronzegewebe

Serie **SFCP..**

SFXCP.. (hochfestes Außenteil)

SFRCP.. (korrosionsbeständiges Außenteil)

															Т	ragzahlen		Kipp-	Stück-
Type	d	В	С	d,	$d_{_{2}}$	$d_{_3}$	d ₄	Н	H₁	$H_{_{2}}$	$G_{_{\scriptscriptstyle{1}}}$	K	G	SW	dynamisch (statisch	C _° *	Winkel	Gewicht
												Kugel Ø	Gewinde			SFCP/SFRCP	SFXCP		
SFCP	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	N	N	Ν	α°	≈g
3	3	6	4,5	5,2	12	5	6,5	21	27	3	7	7,937	M3	5,5	4 700	2700/1600		15	7
4	4	7	5,25	6,5	14	6,5	8,5	24	31	3,5	9,5	9,520	M4	7	6 700	3500/2000		14	11
5	5	8	6	7,7	18	9	11	27	36	4	10	11,112	M5	9	7 800	6 000	15 000	13	19
6	6	9	6,75	9,0	20	10	13	30	40	5	12	12,700	M6	11	10 900	7 000	16 500	13	25
- 8	8	12	9	10,4	24	12,5	16	36	48	5	16	15,875	M8	14	18 000	12 000	26 000	13	43
10	10	14	10,5	12,9	28	15	19	43	57	6,5	20	19,050	M10	17	27 000	14 500	35 500	13	75
12	12	16	12	15,4	32	17,5	22	50	66	6,5	22	22,225	M12	19	36 000	17 000	43 000	13	110
14	14	19	13,5	16,9	36	20	25	57	75	8	25	25,400	M14	22	48 000	24 000	51 500	15	170
16	16	21	15	19,4	42	22	27	64	85	8	28	28,575	M16	22	60 000	28 500	76 500	15	210
18	18	23	16,5	21,9	46	25	31	71	94	10	32	31,750	M18x1,5	27	74 000	40 000	92 500	15	305
20	20	25	18	24,4	50	27,5	34	77	102	10	33	34,925	M20x1,5	30	90 000	45 000	104 500	15	405
22	22	28	20	25,8	54	30	37	84	111	12	37	38,100	M22x1,5	32	110 000	52 000	125 500	15	515
25	25	31	22	29,6	60	33,5	42	94	124	12	42	42,850	M24x2	36	136 000	60 000	148 000	15	730
30	30	37	25	34,8	70	40	50	110	145	15	51	50,800	M30x2	41	186 000	81000	193 000	15	1160
35	35	43	30	40,4	80	49	60	125	165	20	56	59,000	M36x2	50	264 000	95 000	210 000	16	1890
40	40	49	35	44,2	90	57	69	142	187	25	60	66,000	M42x2	60	348 000	130 000	293 000	15	2800
50	50	60	45	55,9	116	65	78	160	218	25	65	82,000	M48x2	65	550 000	235 000	554000	14	4960
Toleranz	H7	0,	+0,2								+1,0		DIN 13	0					
		-0,12	-0,2								0		6 H	-0,3					

Die Größen 3 und 4 sind nicht in DIN ISO 12240-4 enthalten.

*Sicherheitsfaktor von C_o siehe Seite 7.

Material

Serie SFCP..

Außenteil: Bis Größe 14 Automatenstahl 1.0715+C, ab Größe 16 Werkstoff 1.0501, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Cu Sn 8/Cu Zn 40, verzinkt, ausgekleidet mit fest eingeklebter Gleitfolie, bestehend aus PTFE mit einem Bronzestützgewebe.

Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen und poliert.

Serie SFXCP.. (Lieferbar ab Größe 5)

Außenteil: Werkstoff 1.7227 vergütet, oder ähnliches Material, verzinkt und chromatiert nach DIN 50961

Lagerschalen: Analog Serie SFCP.. **Innenring:** Analog Serie SFCP..

Serie SFRCP.. (Lieferbar ab Größe 3)

Außenteil: Korrosionsbeständiger Stahl 1.4305,

ab Größe 16 geschmiedet.

Lagerschalen: Analog Serie SFCP..

Innenring: Analog SFCP.. aber hartverchromt, auf Wunsch korrosionsbeständig

Ausführung

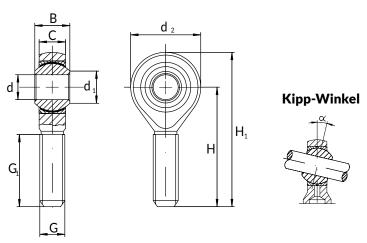
Lagerspiel: Je nach Größe radial zwischen 0,002 und 0,020 mm. Genaue Angaben siehe Seite 6. Bezeichnung z. B. Serie SFCP 10 **C3**.

Gewinde: DIN 13 – 6 H, rechts oder links. Bei Linksgewinde Bezeichnung z. B. Serie SF**L**CP 10. Sondergewinde auf Anfrage (Feingewinde, Zoll, CETOP, etc.).

Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. Serie SFRCP 10 **IR**.

Hartverchromter Innenring: Ab Größe 5 mit hartverchromtem Innenring (nur an Lauffläche) lieferbar. Bezeichnung z. B. Serie SFCP 10 **IH**.

Abgedichtete Ausführung: Die Größen 8–30 können mit austauschbaren Dichtmanschetten geliefert werden (siehe Seite 23).


Wartungsfreie Standard-Gelenkköpfe mit Außengewinde

Gleitpaarung Stahl auf PTFE-Bronzegewebe

Serie SMCP...

SMXCP.. (hochfestes Außenteil)

SMRCP.. (korrosionsbeständiges Außenteil)

												Tragzahlen		Kipp-	Stück-
Type	d	В	С	$d_{_{\scriptscriptstyle 1}}$	d ₂	Н	H	$G_{_{\scriptscriptstyle 1}}$	K	G	dynamisch C	statisc	h C _。 *	Winkel	Gewicht
									Kugel Ø	Gewinde		SMCP/SMRCI	SMXCP		
SMCP	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	N	N	N	α°	≈g
3	3	6	4,5	5,2	12	27	33	15	7,937	М3	4 700	900/500		15	5
4	4	7	5,25	6,5	14	30	37	18	9,520	M4	6 700	1500/900		14	9
5	5	8	6	7,7	18	33	42	20	11,112	M5	7800	3 000	7 500	13	15
6	6	9	6,75	9,0	20	36	46	22	12,700	M6	10 900	4 000	10 500	13	20
8	8	12	9	10,4	24	42	54	25	15,875	M8	18 000	8 000	19 500	13	40
10	10	14	10,5	12,9	28	48	62	29	19,050	M10	27 000	13 000	30 500	13	65
12	12	16	12	15,4	32	54	70	33	22,225	M12	36 000	17 000	43 000	13	100
14	14	19	13,5	16,9	36	60	78	36	25,400	M14	48 000	24 000	51500	15	145
16	16	21	15	19,4	42	66	87	40	28,575	M16	60 000	28 500	76 500	15	215
18	18	23	16,5	21,9	46	72	95	44	31,750	M18x1,5	74 000	40 000	92 500	15	285
20	20	25	18	24,4	50	78	103	47	34,925	M20x1,5	90 000	45 000	104 500	15	370
22	22	28	20	25,8	54	84	111	51	38,100	M22x1,5	110 000	52 000	125 500	15	480
25	25	31	22	29,6	60	94	124	57	42,850	M24x2	136 000	60 000	148 000	15	650
30	30	37	25	34,8	70	110	145	66	50,800	M30x2	186 000	81 000	193 000	15	1050
35	35	43	30	40,4	80	140	180	85	59,000	M36x2	264 000	95 000	210 000	16	1825
40	40	49	35	44,2	90	150	195	90	66,000	M42x2	348 000	130 000	293 000	15	2600
50	50	60	45	55,9	116	185	243	105	82,000	M48x2	550 000	235 000	554000	14	5000
Toleranz	H7	0	+0,2					+1,0		DIN 13					
	. , ,	-0,12	-0,2					0		6g					

Die Größen 3 und 4 sind nicht in DIN ISO 12240-4 enthalten.

*Sicherheitsfaktor von C_o siehe Seite 7.

Material

Serie SMCP..

Außenteil: Bis Größe 14 Automatenstahl 1.0715+C. ab Größe 16 Werkstoff 1.0501, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Cu Sn 8/Cu Zn 40, verzinkt, ausgekleidet mit fest eingeklebter Gleitfolie, bestehend aus PTFE mit einem Bronzestützgewebe.

Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen und poliert.

Serie SMXCP.. (Lieferbar ab Größe 5)

Außenteil: Werkstoff 1.7227 vergütet, oder ähnliches Material, verzinkt und chromatiert nach DIN 50961.

Lagerschalen: Analog Serie SMCP.. Innenring: Analog Serie SMCP..

Serie SMRCP.. (Lieferbar ab Größe 3)

Außenteil: Korrosionsbeständiger Stahl 1.4305,

ab Größe 16 geschmiedet.

Lagerschalen: Analaog Serie SMCP..

Innenring: Analog SMCP.. aber hartverchromt, auf Wunsch

korrosionsbeständig

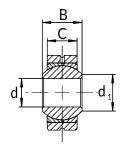
Ausführung

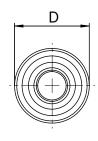
Lagerspiel: Je nach Größe radial zwischen 0,002 und 0,020 mm. Genaue Angaben siehe Seite 6. Bezeichnung z. B. Serie SMCP 10 C3.

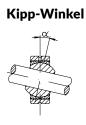
Gewinde: DIN 13 – 6 g, rechts oder links. Bei Linksgewinde Bezeichnung z. B. Serie SMLCP 10. Sondergewinde auf Anfrage.

Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. Serie SMRCP 10 IR.

Hartverchromter Innenring: Ab Größe 5 mit hartverchromtem Innenring (nur an Lauffläche) lieferbar. Bezeichnung z. B. Serie SMCP 10 IH.


Abgedichtete Ausführung: Die Größen 8-30 können mit austauschbaren Dichtmanschetten geliefert werden (siehe Seite 23).


Nachschmierbare Performance-Gelenklager


Gleitpaarung Stahl auf Hochleistungsbronze

Serie SSC..

SSRC.. (korrosionsbeständig)

						K	Tragz	ahlen	Kipp-	Stück-
Type	d	D	В	С	$d_{_{\scriptscriptstyle 1}}$	Kugel Ø	dynamisch C	statisch Co*	Winkel	Gewicht
SSC	mm	mm	mm	mm	mm	mm	N	N	α°	≈g
2	2	9	4,8	3,6	3,6	6,000	900	2 450	16	3
3	3	12	6	4,5	5,2	7,937	1 500	4 200	15	4
4	4	14	7	5,25	6,4	9,520	2 260	5 900	14	6
5	5	16	8	6	7,7	11,112	3 250	19 000	13	9
6	6	18	9	6,75	9,0	12,700	4 300	25 000	13	13
8	8	22	12	9	10,4	15,875	7 200	41000	13	24
10	10	26	14	10,5	12,9	19,050	10 000	58 000	13	40
12	12	30	16	12	15,4	22,225	13 400	78 000	13	60
14	14	34	19	13,5	16,9	25,400	17 000	100 000	15	85
16	16	38	21	15	19,4	28,575	21 600	125 000	15	120
18	18	42	23	16,5	21,9	31,750	26 000	155 000	15	155
20	20	46	25	18	24,4	34,925	31 500	186 000	15	205
22	22	50	28	20	25,8	38,100	38 000	228 000	15	265
25	25	56	31	22	29,6	42,850	47 500	284 000	15	365
30	30	66	37	25	34,8	50,800	64 000	384 000	15	580
35	35	78	43	30	40,4	59,000	90 000	510 000	16	965
40	40	87	49	35	44,2	66,000	120 000	675 000	15	1370
50	50	108	60	45	55,9	82,000	190 000	1 100 000	14	2705
Toleranz	H7	h6**	0	0						
TOICIANZ		3	-0,12	- 0,2						

Diese Gelenklager sind nicht in DIN ISO 12240-1 enthalten.

Die Größen 2, 3, 4 werden ohne Schmiernut geliefert.

*Sicherheitsfaktor von C_o siehe Seite 7.

**Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7· Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

Material

Serie SSC..

Außenteil: Automatenstahl 1.0715+C, brüniert.

Lagerschalen: Cu Sn 8/Cu Zn 40.

Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen

und poliert.

Serie SSRC.. (Lieferbar ab Größe 5)

Außenteil: Korrosionsbeständiger Stahl, Werkstoff 1.4305

Lagerschalen: Analog Serie SSC...

Innenring: Analog Serie SSC.. aber hartverchromt, auf

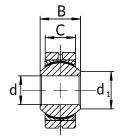
Wunsch korrosionsbeständig

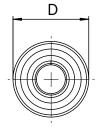
Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,01 und 0,09 mm. Mit eingeengtem oder erweitertem Spiel siehe Seite 6. Bezeichnung z. B. Serie SSC 10 **C2**.

Schmierung: Über eine umlaufende Schmiernut am Außenring.

Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. Serie SSRC 10 **IR**.


Hartverchromter Innenring: Ab Größe 5 mit hartverchromtem Innenring lieferbar. Bezeichnung z. B. Serie SSC 10.


Wartungsfreie Performance-Gelenklager

Gleitpaarung Stahl auf PTFE-Bronzegewebe

Serie SSCP..

SSRCP.. (korrosionsbeständig)

						K	Tragz	ahlen	Kipp-	Stück-
Type	d	D	В	С	d_1	Kugel Ø	dynamisch C	statisch Co*	Winkel	Gewicht
SSCP	mm	mm	mm	mm	mm	mm	N	Ν	α°	≈g
3	3	12	6	4,5	5,2	7,937	4 700	7 300	15	4
4	4	14	7	5,25	6,4	9,520	6 700	11 000	14	6
5	5	16	8	6	7,7	11,112	7 800	15 000	13	8
6	6	18	9	6,75	9,0	12,700	10 900	21 000	13	12
8	8	22	12	9	10,4	15,875	18 000	36 000	13	23
10	10	26	14	10,5	12,9	19,050	27 000	53 000	13	38
12	12	30	16	12	15,4	22,225	36 000	71 000	13	57
14	14	34	19	13,5	16,9	25,400	48 000	93 000	15	80
16	16	38	21	15	19,4	28,575	60 000	116 000	15	110
18	18	42	23	16,5	21,9	31,750	74 000	143 000	15	150
20	20	46	25	18	24,4	34,925	90 000	173 000	15	195
22	22	50	28	20	25,8	38,100	110 000	212 000	15	260
25	25	56	31	22	29,6	42,850	136 000	263 000	15	360
30	30	66	37	25	34,8	50,800	186 000	358 000	15	570
35	35	78	43	30	40,4	59,000	264 000	500 000	16	960
40	40	87	49	35	44,2	66,000	348 000	660 000	15	1360
50	50	108	60	45	55,9	82,000	550 000	1 000 000	14	2680
Toleranz	H7	h6**	0 - 0,12	0 - 0,2						

Diese Gelenklager sind nicht in DIN ISO 12240-1 enthalten.

*Sicherheitsfaktor von C_{\circ} siehe Seite 7.

**Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7. Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

Material

Serie SSCP..

Außenteil: Automatenstahl 1.0715+C, brüniert.

Lagerschalen: Cu Sn 8/Cu Zn 40, verzinkt, ausgekleidet mit fest eingeklebter Gleitfolie, bestehend aus PTFE mit einem Bronzestützgewebe.

Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen und poliert.

Serie SSRCP.. (Lieferbar ab Größe 5)

Außenteil: Korrosionsbeständiger Stahl, Werkstoff 1.4305.

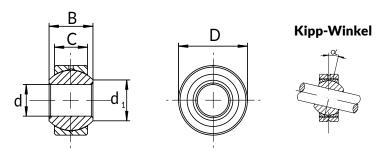
Lagerschalen: Analog Serie SSCP..

Innenring: Analog Serie SSCP.. aber hartverchromt, auf

Wunsch korrosionsbeständig

Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,002 und 0,020 mm. Genaue Angaben siehe Seite 6. Bezeichnung z. B. Serie SSCP 10 **C3**.


Korrosionsbeständiger Innenring: Ab Größe 5 mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z. B. Serie SSCP 10 **IR**.

Abgedichtete Ausführung: Die Größen 8–30 können mit austauschbaren Dichtmanschetten geliefert werden (siehe Seite 23).

Nachschmierbare High-Performance-Gelenklager

Gleitpaarung Stahl auf Hochleistungsbronze

Serie **SC..**

							Trag	zahlen	Kipp-	Stück-
Type	d	D	В	С	d,	K	nachso	hmierbar	Winkel	Gewicht
						Kugel Ø	dynamisch C	statisch C _。 *		
SC	mm	mm	mm	mm	mm	mm	N	N	α°	≈g
5	5	13	8	6	7,7	11,112	3 250	15 300	13	5
6	6	16	9	6,75	9,0	12,700	4 300	20 000	13	9
8	8	19	12	9	10,4	15,875	7 200	33 000	13	16
10	10	22	14	10,5	12,9	19,050	10 000	46 000	13	25
12	12	26	16	12	15,4	22,225	13 400	63 000	13	41
14	14	29	19	13,5	16,9	25,400	17 000	80 000	15	57
16	16	32	21	15	19,4	28,575	21600	100 000	15	76
18	18	35	23	16,5	21,9	31,750	26 000	124 000	15	99
20	20	40	25	18	24,4	34,925	31 500	150 000	15	143
22	22	42	28	20	25,8	38,100	38 000	182 000	15	170
25	25	47	31	22	29,6	42,850	47 500	227 000	15	234
30	30	55	37	25	34,8	50,800	64 000	307 000	15	369
Toleranz	H7	h6**	0	0						
TOTEL ALIZ	,	110	-0,12	-0,2						

^{*}Sicherheitsfaktor von C_o siehe Seite 7.

Material

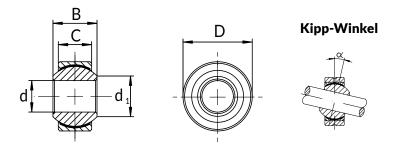
Serie SC..

Außenteil-Lagerschale: Cu Sn 8.

Innenring: Wälzlagerstahl 1.3505, gehärtet, geschliffen und poliert.

Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,01 und 0,09 mm. Mit eingeengtem oder erweitertem Spiel siehe Seite 6. Bezeichnung z. B. Serie SC 10 **C2.**


Korrosionsbeständiger Innenring: Mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z.B. Serie SC 10 **IR**.

^{**}Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7. Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage

Wartungsfreie High-Performance-Gelenklager

Gleitpaarung Stahl auf PTFE-Bronzegewebe

Serie **SCP..**

							Tragza	ahlen	Kipp-	Stück-
Type	d	D	В	С	d ₁	K	wartur	ngsfrei	Winkel	Gewicht
						Kugel Ø	dynamisch C	statisch C _. *		
SCP	mm	mm	mm	mm	mm	mm	N	N	α°	≈g
5	5	13	8	6	7,7	11,112	7 800	12 000	13	5
6	6	16	9	6,75	9,0	12,700	10 900	17 000	13	9
8	8	19	12	9	10,4	15,875	18 000	29 000	13	16
10	10	22	14	10,5	12,9	19,050	27 000	42 000	13	25
12	12	26	16	12	15,4	22,225	36 000	57 000	13	41
14	14	29	19	13,5	16,9	25,400	48 000	75 000	15	57
16	16	32	21	15	19,4	28,575	60 000	93 000	15	76
18	18	35	23	16,5	21,9	31,750	74 000	115 000	15	99
20	20	40	25	18	24,4	34,925	90 000	138 000	15	143
22	22	42	28	20	25,8	38,100	110 000	170 000	15	170
25	25	47	31	22	29,6	42,850	136 000	210 000	15	234
30	30	55	37	25	34,8	50,800	186 000	286 000	15	369
Toleranz	H7	h6**	0	0						
TOTELATIZ	,	110	-0,12	-0,2						

^{*}Sicherheitsfaktor von C_o siehe Seite 7.

Material

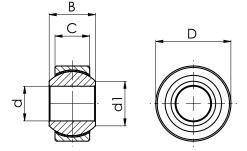
Serie SCP..

Außenteil-Lagerschale: Korrosionsbeständiger Stahl, Werkstoff 1.4305. Gleitfolie aus PTFE mit Bronzestützgewebe ausgelegt und verklebt.

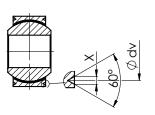
Innenring: Analog Serie SC..

Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,002 und 0,020 mm. Genaue Angaben siehe Seite 6.


Bezeichnung z. B. SCP 10 C2.

Korrosionsbeständiger Innenring: Mit korrosionsbeständigem Innenring aus Werkstoff 1.4034 möglich. Bezeichnung z.B. Serie SCP 10 IR.


^{**}Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7. Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

Wartungsfreie Hochleistungs-Gelenklager in Zollabmessungen Gleitpaarung Stahl auf PTFE-Edelstahlstützgewebe

Serie **SCDZ..**

									Tragza		Kipp-	Stück-
Type	d	D	В	С	d ₁	d _v ***	Х	K		ıngsfrei	Winkel	Gewicht
								Kugel Ø	dynamisch C	statisch C _。 *		
SCDZ	mm	mm	mm	mm	mm	mm	mm	mm	N	N	α°	≈g
5	5/16 7,937	17,462	11,100	8,05	10,1	15,9	1,0	15,050	21000	34 000	14	12
6	3/8 9,525	20,638	12,700	10,3	12,0	18,6	1,0	17,450	33 000	52 500	9	21
7	7/16 11,112	23,812	14,275	11,2	13,7	21,8	1,0	19,850	41 000	66 000	10	31
8	1/2 12,700	25,400	15,880	12,8	15,5	23,4	1,0	22,225	55 000	86 500	9	38
9	9/16 14,287	28,575	17,450	13,6	18,4	26,5	1,0	25,400	67 000	106 000	10	53
10	5/8 15,875	30,162	19,050	14,4	19,1	28,1	1,0	27,000	75 000	117 500	12	60
12	3/4 19,050	34,925	22,225	16,0	22,6	32,9	1,0	31,750	100 000	155 500	13	90
Toleranz	Н9	h6**	0 -0,12	+0,1 -0,1								

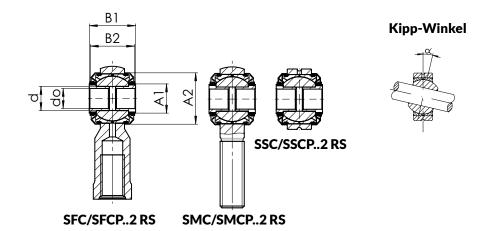
^{*}Sicherheitsfaktor von C_o siehe Seite 7.

Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7. Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage. * Werte gelten nur bei V-Nut.

Material

Serie SCDZ..

Außenteil-Lagerschale: Korrisionsbeständiger Stahl 1.4305, ausgekleidet mit fest eingeklebter Gleitfolie, bestehend aus PTFE mit einem Edelstahlstützgewebe.


Innenring: 1.7227 + GNC

Ausführung

Lagerspiel: Je nach Größe radial zwischen 0,002 und 0,020 mm. Genaue Angaben siehe Seite 6. Bezeichnung z. B. Serie SCDZ 10 C3.

Abgedichtete Gelenkköpfe und Gelenklager*

Serie ..2RS

Type	d	d。	A ₁	A_{2}	B ₁	$B_{\scriptscriptstyle 2}$	Kipp-Winkel
2RS	mm	mm	mm	mm	mm	mm	α°
8	8	6	10,5	18,5	19	18	10
10	10	8	12,5	21,5	21	20	10
12	12	10	14,5	25,5	23	22	10
14	14	12	16,5	29,5	26	25	12
16	16	14	19	32,5	28	27	12
18	18	16	21	35,5	30	29	12
20	20	18	23	39	32	31	12
22	22	20	25,5	42,5	35	34	12
25	25	22	29	46,5	38	37	12
30	30	25	33,5	55	44	43	12
Toleranz		H7			0 -0,3		

Material

Serie 2RS..

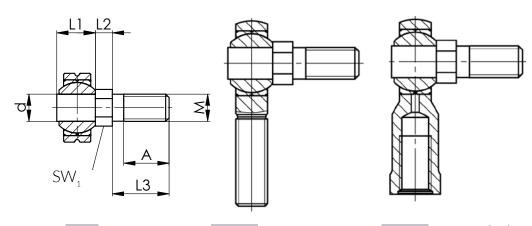
Dichtmanschette: Fluorelastomerkautschuk (FKM). Öl- und ozonbeständig, Temperaturbeständig von −25° C bis + 250° C

Schleifring: Messing

Bohrungsbüchse: Korrosionsbeständiger Stahl,

Werkstoff 1.4305

Ausführung


Die nachschmierbaren und die wartungsfreien Gelenkköpfe und Gelenklager der Größen 8 bis 30 können mit austauschbaren Dichtmanschetten versehen werden, die das Lager vor grobem Schmutz, Staub und Spritzwasser schützen. Die elastische Dichtmanschette wird außen über die zu diesem Zweck verlängerte und mit einer Nut versehene Lagerschale und innen über einen Schleifring gezogen. Bezeichnung z. B. Serie SFC 10.**2RS**.

^{*} Diese Art der Abdichtung ist nicht für Automotive-Anwendungen geeignet. Für diese Anwendung ist eine Beratung durch den Vertrieb erforderlich.

Gewindebolzen

- für Gelenklager und Gelenköpfe

Serie ..W

Туре	d	L ₁	L_2	L_3	А	М	SW ₁	Stück- gewicht (nur Bolzen)
W	mm	mm	mm	mm	mm	mm	mm	≈g
5	5	9	5	11	8	M 5	7	4
6	6	10	5,5	13	10	M 6	7	7
8	8	13	6,5	17	13	M 8	11	17
10	10	15	7	21	17	M 10	11	24
12	12	17	7,5	25	20	M 12	14	45
14	14	20	8,5	29	22	M 14	14	70
16	16	22	9,5	33	24	M 16	17	105
20	20	26	12	45	35	M 20	22	210
Toleranz			+0,1	+0,3	+1,0	DIN13		
			-0,1	-0,3	0	6g		

Material

Serie ..W

Gewindebolzen: Korrosionsbeständiger Stahl,

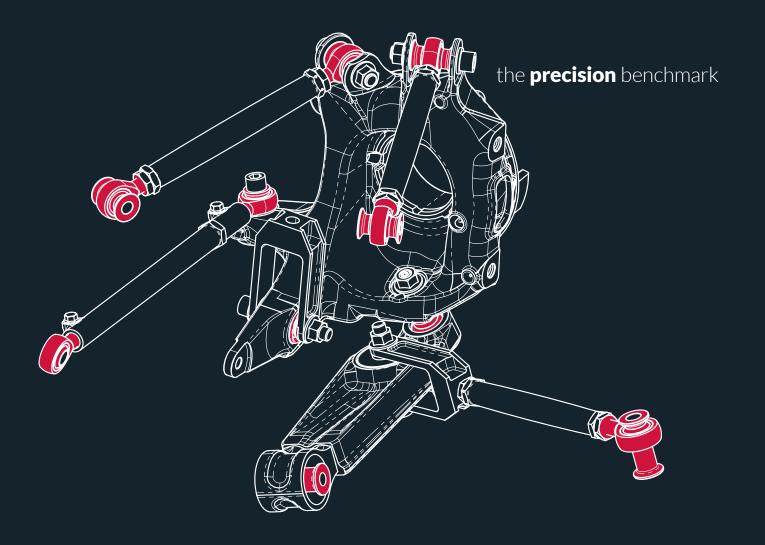
Werkstoff 1.4305, Sechskant blank.

Andere Materialien wie z. B. Werkstoff 1.7227 brüniert.

Ausführung

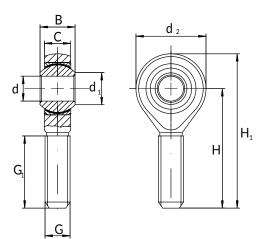
Alle Serien der Gelenkköpfe und Gelenklager, bis auf die abgedichtete Serie ..2RS-Ausführung, können mit Gewindebolzen ausgerüstet und dann als Winkelgelenke eingesetzt werden. Der Bolzen wird in den Innenring eingepreßt und vernietet.

Bezeichnung z. B. Serie SFC 10 **W**. **Sonderausführung:** Auf Anfrage


Branchenlösungen

Lenker und Gleitlagertechnik

Fahrwerktechnik


Gleitlagertechnik für Motorsport

High-Performance Serie

Wartungsfreie High-Performance Gelenkköpfe Gleitpaarung Stahl auf PTFE-Edelstahlgewebe

Serie **SM(L)HP..**

											Tragzahlen		Dreh-	Kipp-	Stück-
Type	d	В	С	$d_{_{\scriptscriptstyle 1}}$	d ₂	Н	H₁	$G_{_{\scriptscriptstyle 1}}$	K	G	dynamisch C	statisch C _° *	moment	winkel	gewicht
									Kugel Ø	Gewinde					
SM(L)HP	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	N	N	Nm	α°	≈g
6	6	9	6,75	9,0	20	36	46	22	12,700	M6	15 000	10 000	0,05 - 0,5	13	21
8	8	12	9	10,4	24	42	54	25	15,875	M8	25 000	18 000	0,2 - 1,0	13	38
10	10	14	10,5	12,9	28	48	62	29	19,050	M10	37 500	29 000	0,5 - 1,5	13	62
12	12	16	12	15,4	32	54	70	33	22,225	M12x1,5	50 000	40 000	1,0 - 2,0	13	93
14	14	19	13,5	16,9	36	60	78	36	25,400	M14x1,5	67 000	48 000	1,5 - 3,0	15	130
16	16	21	15	19,4	42	66	87	40	28,575	M16x1,5	84 000	71000	1,5 - 3,5	15	200
18	18	23	16,5	21,9	46	72	95	44	31,750	M18x1,5	103 000	86 000	2,0 - 5,0	15	275
20	20	25	18	24,4	50	78	103	47	34,925	M20x1,5	126 000	98 000	3,0 - 6,0	15	360
Toleranz	H9	0	+0,2					+1,0		DIN 13					
		-0,12	-0,2					-1,0		6g					

Weitere Gewindesteigungen auf Anfrage.

*Sicherheitsfaktor von C_o siehe Seite 7.

Material

Serie SM(L)HP..

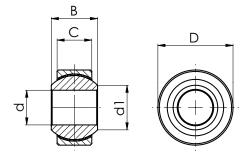
Außenteil: 1.4057 (hochfest und korrosionsbeständig),

100% rissgeprüft.

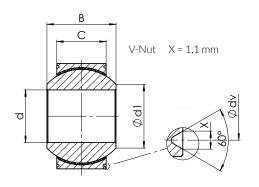
Innenring: 1.7227 + GNC **Lagerschalen:** CW713R

Ausführung

Gewinde: DIN 13 - 6 g, rechts oder links. Bei Linksgewinde Bezeichnung z. B. Serie SM**L**HP 10.


Gleitpaarung: PTFE-Edelstahlgewebe.

Sondergewinde auf Anfrage.


Wartungsfreie High-Performance Gelenklager

Gleitpaarung Stahl auf PTFE-Edelstahlgewebe

Serie SCHP...

Kipp-Winkel

								Tragzahlen		Kipp-	Kipp-	Stück-
Type	d	D	В	С	d,	d _v ***	K	wartur	wartungsfrei		Winkel	Gewicht
							Kugel Ø	dynamisch C	statisch C _° *			
SCHP	mm	mm	mm	mm	mm	mm	mm	N	Ν	Nm	α°	≈g
6	6	16	9	6,75	9,0	14	12,700	15 000	23 000	0,025 - 0,16	13	10
8	8	19	12	9	10,4	17	15,875	25 000	40 000	0,1-0,33	13	17
10	10	22	14	10,5	12,9	20	19,050	37 500	58 000	0,25 - 0,5	13	25
12	12	26	16	12	15,4	24	22,225	50 000	79 000	0,5 - 0,66	13	41
14	14	29	19	13,5	16,9	27	25,400	67 000	105 000	0,75 - 1,0	15	57
16	16	32	21	15	19,4	30	28,575	84 000	130 000	0,75 - 1,2	15	76
18	18	35	23	16,5	21,9	33	31,750	103 000	161 000	1,0 - 1,66	15	100
20	20	40	25	18	24,4	38	34,925	126 000	193 000	1,5 - 2,0	15	140
Toleranz	Н9	h6**	0	0								
	,		-0,12	-0,2								

^{*}Sicherheitsfaktor von C_o siehe Seite 7.

**Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7-Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

*** Werte gelten nur bei V-Nut.

Material

Serie SCHP...

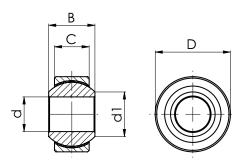
Außenteil: 1.4305 (korrosionsbeständig)

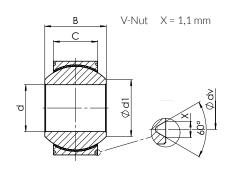
Innenring: 1.7227 + GNC

Ausführung

Serie SCHP..V (mit V-Nut)

Gleitpaarung: Stahl auf PTFE-Edelstahlstützgewebe


Einrollservice auf Anfrage.


Wartungsfreie High-Performance Aluminium-Titan-Leichtbaugelenklager

Gleitpaarung Titan auf PTFE-Edelstahlgewebe

Serie SACA..IT

Serie SACA..ITV (mit V-Nut)

Kipp-Winkel

Туре	d	$d_{_1}$	d _v ***	В	С	D	К	Tragza	hlen	Kipp-	Kipp-	Stück-
							Kugel Ø	dynamisch C	statisch C _. *	moment	Winkel	Gewicht
SACAIT	mm	mm	mm	mm	mm	mm	mm	N	N	Nm	α°	≈g
8	8	10,4	17	12	9	19,0	15,875	25 000	20 000	0,1-0,33	13	11
10	10	12,9	20	14	10,5	22,0	19,050	37 500	29 000	0,25 - 0,5	13	13
12	12	15,4	24	16	12	26,0	22,225	50 000	40 000	0,5 - 0,66	13	20
14	14	16,9	27	19	13,5	29,0	25,400	67 000	52 500	0,75 - 1,0	15	29
16	16	19,4	30	21	15	32,0	28,575	84 000	65 000	0,75 - 1,2	15	39
18	18	21,9	33	23	16,5	35,0	31,750	103 000	80 000	1,0 - 1,66	15	50
Toleranz	H7			0	0	h6**						
				-0,12	-0,2							

^{*}Sicherheitsfaktor von C_o siehe Seite 7.

Material

Serie SACA..IT

Außenteil: Hochfestes Aluminium EN-AW 6082-T6

Innenring: Titan Ti-AI6-V4 Einrollservice auf Anfrage.

Ausführung

Serie SACA..ITV (mit V-Nut)

Gleitpaarung: Titan auf PTFE-Edelstahlgewebe

Einrollservice auf Anfrage.

^{**}Empfohlene Toleranz-Gehäusebohrung bei Stahl ist M7-Weitere Gehäuse-Materialien betr. Toleranz auf Anfrage.

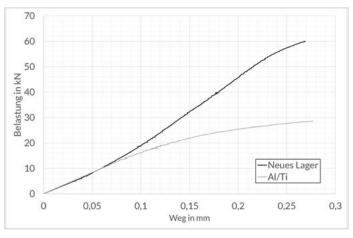
*** Werte gelten nur bei V-Nut.

Höchstleistungs-Leichtbaugelenklager

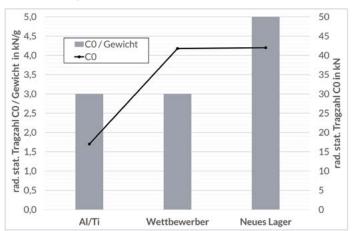
- für höchstanspruchsvolle Leichtbauanwendungen

Serie SCHP..IT

Die in Rennsportserien erprobten Lager bestehen aus einem beschichteten Titaninnenring kombiniert mit einem hochfesten, nichtrostenden Stahl als Büchsenmaterial.

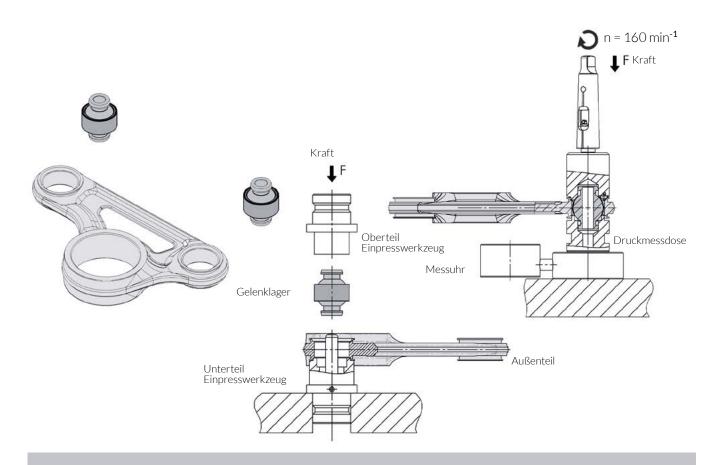

Dies sorgt für ein einzigartiges Festigkeits- Gewichtsverhältnis.

	Wettbewerb	Alu-Titan- Leichtbaulager	Höchstleistungs- Leichtbaulager <mark>Neu!</mark>
Gewicht	16,0 g	6,0 g	8,5 g
rad. stat. Tragzahl C ₀	41,8 kN	17,0 kN	42,0 kN



Druckversuch Gelenklager Gr. 5 zöllig

Produktvergleich



Höchstleistung auf einen Blick

Merkmale	Vorteile
Hohe Festigkeit	Zugfestigkeiten der ausgewählten Werkstoffe ~ 900 MPa
Gewichtsersparnis Innenring	Innenring aus Titanlegierung* erzielt im Vergleich zu Stahl eine ca. 40%ige Gewichtsersparnis. *Lagervariante auch auf Anfrage mit anderen Innenring-Werkstoffen lieferbar
Korrosionsbeständigkeit	Büchsenmaterial aus korrosionsbeständigem Stahl mit hohem Cr-Anteil (überlegene Zähigkeit und Korrosionsbeständigkeit gegenüber 13%-igem Chromstahl)
Hervorragende Gleiteigenschaften	Kombination einer DLC-Beschichtung des Innenrings und spezieller Gleitfolie sorgt für hervorragende Gleiteigenschaften und ein minimales Losbrechmoment

Lager Serie SCHP..IT auf Anfrage.

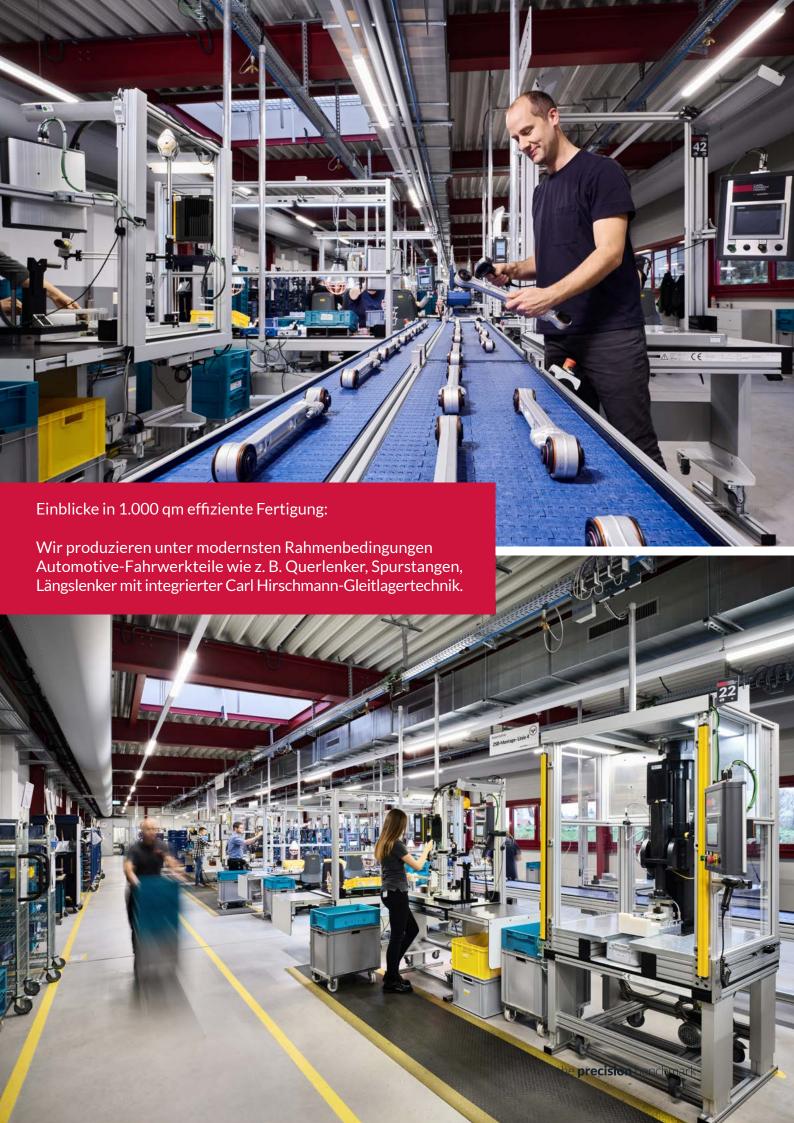
Einrollwerkzeug für Lager mit V-Nut

1. Produkt mit Lagerstellen

- Außenteil mit definierten Lagerbohrungen
- Gelenklager mit V-Nut

2. Einpresswerkzeug

- Außenteil auf Unterteil des Einpresswerkzeuges legen
- Gelenklager einlegen
- Gelenklager durch das Oberteil mit Presse einpressen

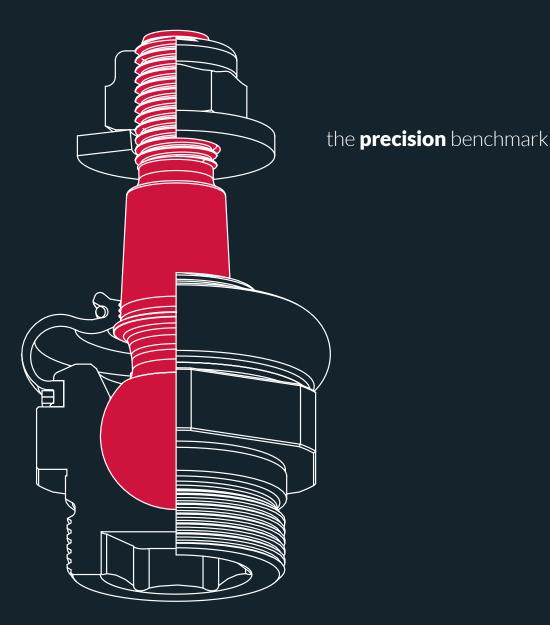

3. Einrollwerkzeug

- Rollkopf in Futter der Bohrmaschine einsetzen
- Außenteil mit eingepresstem Lager in Vorrichtung legen
- 1. Seite einrollen / verrollen
- Teil wenden
- 2. Seite einrollen / verrollen

Vorteile

Geringe Krafteinwirkung, lagerschonend Keine hydraulische Presse erforderlich Einfach, da eine Ständerbohrmaschine ausreicht Auf Anfrage können wir Ihre Lager verrollen

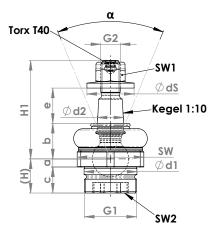
Eine Schulung, sowie weitere Details sind auf Anfrage möglich. Kontaktieren Sie uns einfach.


Branchenlösungen

Trag- und Führungsgelenke für automotive Anwendungen

Kundenorientierte Komplettlösungen

Trag- und Führungsgelenke


High-Performance im Fahrwerk

Trag- und Führungsgelenke

Serie **STCD..** (Performance) **STCD..IX** (High-Performance)

Type STCD STCDIX			Grösse 12 Performance Performance	Grösse 14 Performance Performance	Grösse 16 Performance Performance	Grösse 18 Performance Performance
a a		mm	5	Performance 5	5	7
a b		mm	21	25,5	26	27
		mm	16	16	18	18
e		mm	17,0-23,5	17,7-23,1	20,5-29,5	23,5-31,0
Ød1	-0,02 -0,03	mm	32,5	36,5	42,5	42,5
Ød2		mm	16,1	19,1	20,1	22,15
ØdA	min.	mm	26	31	33	35
ØdS		mm	29	35	35	39
G1	Gewinde		M32x1,5	M36x1,5	M42x1,5	M42x1,5
G2	Gewinde		M12x1,5	M14x1,5	M14x1,5	M16x1,5
Н		mm	21	21	23	25
H1		mm	61	68	75	80
SW	Schlüsselweite Aussensechskant Traggelenk	mm	41	46	50	55
SW1	Aussensechskant Mutter	mm	19	22	22	24
SW2	Innensechskant Traggelenk	mm	19	19	24	24
α°		٥	45	45	40	40
Zul. max. stat.	Co,rad	kN	11 ,2 20,7	13 ,5 24,7	17 31,5	24 ,5 45 ,5
Tragzahlen	Co,ax Zug	kN	9,5	17,5	23,5	30
	Co,ax Druck	kN	73,5	92	113	154
Empfohlenes Anzugsdreh- moment SW	Aussensechskant Traggelenk	Nm	110	200	300	330
Empfohlenes Anzugsdreh- moment SW1	Mutter-Kugelzapfen	Nm	42	80	105	125

Performance

Serie STCD..

Außenteil: Hochfestes Aluminium EN AW-6082-T6

Kugelzapfen: 1.7227+GNC

Dichtmanschette: Chloropren-Kautschuk

Sicherungsmutter: Nach ISO 10513, Festkeitsklasse 10

Zinklamellenbeschichtet

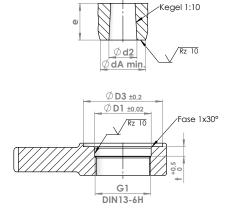
Spannscheibe: 1.1211; ISO 10670; Zinklamellenbeschichtet **Spannringe:** Nach EN-10270-1-SM; phospatiert und lackiert

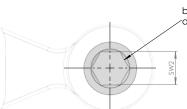
High-Performance

Serie STCD..IX

Außenteil: Hochfestes Aluminium EN AW-6082-T6 **Kugelzapfen:** Ausscheidungshärtbarer, korrosions-

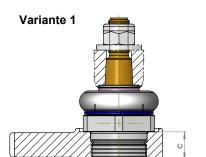
beständiger Stahl

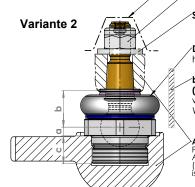

Dichtmanschette: Chloropren-Kautschuk


Sicherungsmutter: Nach ISO 10513, Festkeitsklasse 10

Zinklamellenbeschichtet

Spannscheibe: 1.1211;ISO 10670; Zinklamellenbeschichtet **Spannringe:** Nach EN-10270-1-SM; phospatiert und lackiert


Einbauvarianten



bei ausschließlich rückseitiger Zugänglichkeit ist die Montage mittels Innensechskant möglich

Empfehlung: Um einen bestmöglichen Korrosionsschutz zu erreichen, sollten Mutter und überstehendes Gewinde sowie Anbauteile nach der Montage vollständig mit Schutzwachs abgedeckt werden.

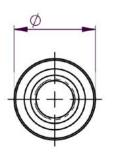
Spannscheibe

selbstsichernde Mutter

/Dichtmanschette hitzebeständig bei Dauerbelastung 100°C

bei Wärmequellen > 100°C (z.B. Bremsanlage) nahe des Gelenkes wird der Einsatz von Wärmeabschirmblechen empfohlen

Anschlussgeometrien (Kunde) Für die Gestaltung der Anschlussgeometrie (inkl. Werkstoffauswahl, Festigkeitsauslegung) ist der Kunde alleine verantwortlich

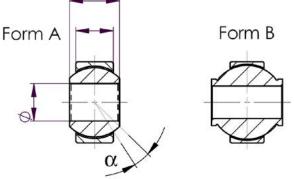

Type			Grösse 12	Grösse 14	Grösse 16	Grösse 18
STCD STCDIX						
а		mm	5	5	5	7
b		mm	21	25,5	26	27
С		mm	16	16	18	18
е		mm	17,0-23,5	17,7-23,1	20,5-29,5	23,5-31,0
t		mm	5,5	5,5	6,5	6,5
ØD1	±0,02	mm	32,5	36,5	42,5	42,5
ØD3	±0,2	mm	45,5	50,5	55,5	59,5
ød2		mm	16,1	19,1	20,1	22,15
ØdA min.			0/	04	00	0.5
Anlagefläche R _z 10		mm	26	31	33	35
G1	Gewinde		M32x1,5	M36x1,5	M42x1,5	M42x1,5
SW2		mm	19	19	24	24

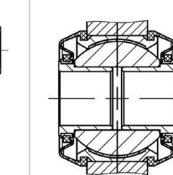
Anfrageformular

- Gelenkköpfe und Gelenklager

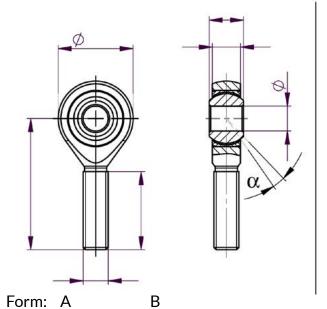
Bitte nennen Sie uns auf diesem Blatt die Maße, die gewünschten Ausführungen sowie die benötigten Stückzahlen und senden Sie uns dieses Blatt per E-Mail an: **gleitlager@carlhirschmann.de**. Sie erhalten dann zeitnah ein Angebot.

Kontakt: Firma: Tel.:





Werkstoff Innenring: Werkstoff Außenring:


Wartungsfrei: Nachschmierbar:

Abgedichtet: Kippwinkel α : Stückzahl:

Abgedichtete Version

Werkstoff Innenring: Werkstoff Außenteil:

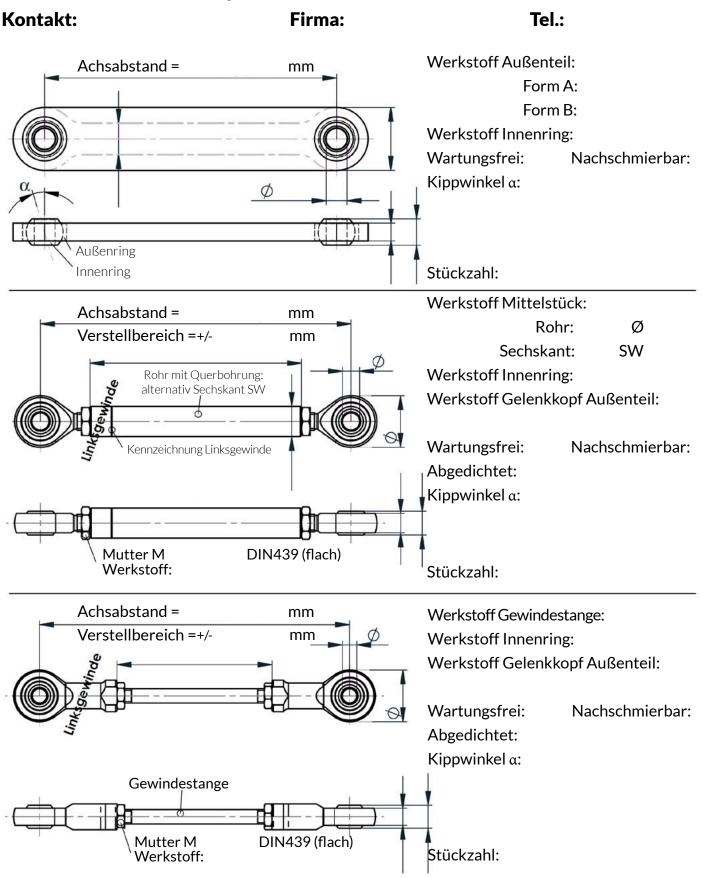
Wartungsfrei: Nachschmierbar:

Abgedichtet: Kippwinkel α: Stückzahl: SW SW

В

Werkstoff Innenring: Werkstoff Außenteil:

Wartungsfrei: Nachschmierbar:


Abgedichtet: Kippwinkel α: Stückzahl:

Form: A

Anfrageformular

- Doppelgelenklager

Bitte nennen Sie uns auf diesem Blatt die Maße, die gewünschten Ausführungen sowie die benötigten Stückzahlen und senden Sie uns dieses Blatt per E-Mail an: gleitlager@carlhirschmann.de. Sie erhalten dann zeitnah ein Angebot.

Anwendungsbeispiele

Abfüllmaschinen

Aufzüge

Bäckereimaschinen

Baumaschinen

Bergwerksmaschinen

Druckereimaschinen

Energietechnik Etikettiermaschinen

Fahrzeuge

Flaschenwaschmaschinen

Förderbänder Gasturbinen

Graviermaschinen

Handlinggeräte

Holzbearbeitungsmaschinen

Hydraulikzylinder Kartonagenmaschinen

Kellereimaschinen Landwirtschaftliche Maschinen

Lederbearbeitungsmaschinen

Luft- und Raumfahrt Mischmaschinen Motorenbau

Motorsport

Nähmaschinen Pneumatikzylinder Schneeräummaschinen

Schweißmaschinen

Segelflugzeuge Signalanlagen Sortieranlagen Spinnereimaschinen Straßenbaumaschinen

Straßenbaumaschinen Strick- und Textilmaschinen

Tablettiermaschinen Triebwerksbau

Verpackungsmaschinen

Waagen

Wasserturbinen Werkzeugmaschinen Ziegeleimaschinen

Zigarettenmaschinen u. v. a.

Allgemeines

Serienausführungen

Die Einzelheiten der Variationsmöglichkeiten können dem Text unterhalb der Tabellen entnommen werden.

Sonderausführungen

Wir fertigen auch nach Kundenwunsch bzw. Zeichnung.

Beratungsleistung

Alle Katalogangaben beruhen auf jahrelangen Erfahrungen in der Entwicklung, Herstellung und dem Einsatz von Gelenkköpfen und Gelenklagern.

Unsere Gewährleistung bezieht sich auf die Qualität und Zuverlässigkeit unserer Produkte, jedoch weisen wir darauf hin, dass die Einsatzbedingungen und Parameter in jedem Einzelfall variieren können. Allgemeingültige Aussagen über die Leistung unserer Produkte sind nicht immer zutreffend, da praktische Versuche notwendig sind, um die Eignung für spezifische Anwendungen zu überprüfen. Daher können wir keine Gewähr für die Richtigkeit aller Empfehlungen geben, die in Bezug auf die Nutzung unserer Produkte ausgesprochen werden.

Wir empfehlen Ihnen deshalb, die Produkte unter den vorgesehenen Bedingungen zu testen, um die besten Ergebnisse zu erzielen. Bei Fragen oder für weitere Informationen stehen wir Ihnen jederzeit gerne zur Verfügung!

Zertifikate

ISO 9001/EN 9100/ISO 14001/TISAX

Beratung und Vertrieb

Unsere Mitarbeiter, Vertretungen und Vertragshändler im In- und Ausland stehen Ihnen gerne zur Verfügung.

Mängelrechte

Wir verweisen auf unsere "Allgemeinen Lieferungs- und Zahlungsbedingungen".

Technische Änderungen

Wir behalten uns technische Änderungen vor.

HEADQUARTER

Carl Hirschmann GmbH

Kirchentannenstraße 9 78737 Fluorn-Winzeln Germany

T +49 7402 183-0 F +49 7402 183-10 E info@carlhirschmann.de

USA

Carl Hirschmann, Inc.

165 East Commerce Drive Ste 104 Schaumburg, IL 60173 USA

T +18474689700 F +18474689701 E info@carlhirschmann.us

CHINA

- Carl Hirschmann

Room C528, Block 180, South Chang Jiang Road Bao Shan District, Shanghai P.R.CHINA 200433

T +86 139 16 13 58 45 E info@carlhirschmann.com.cn