

Gesamtkatalog

Präzisionskettensysteme für Antriebs- und Förderzwecke

Herzlich Will iwis

© Copyright iwis antriebssysteme GmbH & Co. KG, München, Deutschland 2018

Der Inhalt dieses Katalogs ist urheberrechtlich durch den Herausgeber geschützt. Jede gesamtheitliche oder auszugsweise Verwertung des Inhalts ist ohne Zustimmung des Herausgebers unzulässig und strafbar. Bei der Erstellung des Katalogs wurde äußerste Sorgfalt angewandt, nichtsdestotrotz übernimmt der Herausgeber keine Haftung für eventuell auftretende Fehler und Auslassungen insbesondere im technischen Bereich.

Printed: SD DE 02/2018, 2.000

kommen bei antriebssysteme!

Der direkte Weg zu Ihrer Bestellung!

Unser Customer Service Team erreichen Sie werktags durchgehend von 8:00–18:00 Uhr.

+49 89 76909-1500

Oder nutzen Sie unser Fax.

+49 89 76909-1198

Anfragen und Bestellungen werden vom Customer Service Team umgehend bearbeitet. sales-muenchen @iwis.com

Weitere Informationen zu unseren Produkten finden Sie auch auf unserer Unternehmens-Website:

www.iwis.com

Inhaltsverzeichnis iwis

Das Unternehmen

- 2 Herzlich Willkommen
- 4 Inhaltsverzeichnis
- 6 iwis antriebssysteme
- 10 Highlights, Anwendungen und Kundennutzen
- 12 Unser Serviceangebot

Produktprogramm

- 14 Swis Rollenketten
- 16 nach ISO 606 (DIN 8187)
- 18 nach ISO 606 (DIN 8188)
- 19 Rollenketten langgliedrig
- 20 Swis Förderketten
- 22 mit Mitnehmerlaschen
- 24 Exkurs: Spitzlaschenketten
- 26 mit Winkellaschen
- 28 Sondermitnehmerlaschen
- 30 Sonderwinkellaschen
- 31 mit verlängerten Bolzen
- 32 Mehrfachsteckglieder
- 33 Förderketten mit U-Bügel
- 34 Service für Förderketten
- 40 **SWIS** MEGAlife wartungsfreie Ketten
- 44 MEGAlife I Rollenketten
- 45 Rollenketten mit geraden Laschen
- 46 Förderketten mit Mitnehmerlaschen
- 47 Förderketten mit Winkellaschen
- 48 Förderketten mit verlängerten Bolzen
- 49 MEGAlife II Rollenketten
- 50 Sonderausführungen
- 51 wartungsfreie Stauförderketten
- 54 **TWIS** CF-Edelstahlketten

Gesamtkatalog

Produktprogramm

- 62 b dry wartungsfreie Edelstahlketten
- 66 Swis CR-Ketten: korrosionsbeständige Ketten
- 70 Stauförderketten
- 72 Produktübersicht
- 74 MEGAlife Stauförderketten
- 76 mit versetzten Stauförderrollen
- 78 Standard-Stauförderketten
- 80 ៦ **smart** Stauförderketten
- 80 mit Teile- und Fingerschutz
- 81 Seitenbogen-Stauförderketten
- 82 Hinweise
- 83 Zubehör
- 84 Spezialförderketten
- 86 Gripketten
- 91 Tubentransportketten
- 92 Dosentransportketten
- 94 Schubketten
- 96 Plattenketten
- 98 Transferketten
- 101 Hohlbolzenketten
- 102 Palettentransportketten
- 102 Seitenbogenketten
- 103 Flyerketten

Zubehör

- 104 Chain Condition Monitoring
- 108 **Wis** Kettenräder und Kettenradscheiben
- 112 Werkzeuge
- 124 Sylvis Automatische Spanner

Kettenratgeber

- 138 Effiziente Schmierung
- 139 Perfekte Wartung
- 140 Erstschmierstoffe
- 143 Nachschmierstoff
- 144 Kettentechnik
- 145 Kettenleitfaden

iwis

Joh. Winklhofer Beteiligungs GmbH & Co. KG

Unternehmenszentrale, Dachgesellschaft der selbstständigen Tochterunternehmen,

iwis motorsysteme GmbH & Co. KG

Tochtergesellschaft für Automobilanwendungen wie Steuertriebs-, Massenausgleichssysteme sowie Ölpumpenantriebe

München (DE) Landsberg (DE) Indianapolis (US) Murray (US) PingHu (CN) Pune (IN) São Paulo (BR) Seoul (KR) Shanghai (CN) Tokio (JP)

iwis antriebssysteme GmbH & Co. KG

Tochtergesellschaft für Industrieanwendungen, Hochleistungsketten und Antriebssysteme für eine

München (DE) Indianapolis (US) Istanbul (TR) Johannesburg (ZA) Meyzieu (FR) Othmarsingen (CH) Pune (IN) Strakonice (CZ) Surrey (CA) Suzhou (CN) Tipton (UK)

iwis antriebssysteme

Handels-, Service- und Dienstleistungsgesellschaft der industriellen

iwis agrisystems

Kompetenzzentrum für Landmaschinenketten

ecoplus

Indianapolis (US) Istanbul (TR) Lajeado (BR)
Meyzieu (FR)
Othmarsingen (CH)
Surrey (CA)
Suzhou (CN)
Tipton (UK)

Indianapolis (US) Istanbul (TR) Johannesburg (ZA)
Lajeado (BR)
Meyzieu (FR)
Othmarsingen (CH)
Suzhou (CN) Surrey (CA) Tipton (UK)

Die Reise der Vorwärtsstrebenden

Ein Unternehmen, das auf eine **100-jährige** Entwicklung zurückblickt, hat eine Geschichte. Die Unternehmer-Familie Winklhofer steuert seit Jahrzehnten die Geschicke der Firma iwis und baute sie zu einer Unternehmensgruppe aus, die sich der Tradition, Präzision und der Innovation verpflichtet fühlt. Die Unternehmensgruppe produziert Rollenketten und -systeme im Hochleistungsbereich für die Automobilindustrie, den Maschinen- und Anlagenbau, die Verpackungs-, Druck- und Lebensmittelindustrie, die Landwirtschaft und für industrielle Anwendungen im Bereich Fördertechnik. Mehr als 1300 Mitarbeiter an den Standorten München, Landsberg am Lech, Wilnsdorf, Sontra und Strakonice (CZ) haben sich einem Qualitätsstandard auf höchstem Niveau verpflichtet.

Konsequente Kundenorientierung in allen Bereichen führt zu einer engen Zusammenarbeit mit unseren Kunden und Lieferanten bis hin zu gemeinsamen Entwicklungen – denn unser Ziel ist es, unseren Kunden stets eine Problemlösung von höchster Qualität und Nachhaltigkeit anbieten zu können. Forschung und Entwicklung sind dabei elementare Bestandteile unserer Unternehmensphilosophie: Neue Trends aufzuspüren, die Entwicklung neuer Werkstoffe und Fertigungstechnologien erfordern eine Innovationskraft und Motivation, auf die wir stolz sind und die unsere Spitzenposition am Markt rechtfertigt. So ist iwis antriebssysteme GmbH & Co. KG weltweit Antriebskraft für den allgemeinen Maschinenbau und liefert Präzisionsketten-Systeme, die rund um die Welt bewegen.

Technische Perfektion in höchster Qualität für einen maximalen Anwendernutzen – das ist unser Anspruch. Unser Leistungsstandard ist 100%ige Wiederholgenauigkeit bei mehr als 30 Mio. Einzelteilen pro Tag in der Fertigung – ein Qualitätsbenchmark, für den bei iwis ein einziger Ausdruck steht: höchste Präzision. Hierauf sind wir stolz, und zahlreiche Zertifizierungen und Auszeichnungen im Qualitätsbereich zeigen uns, dass wir den richtigen Weg gehen!

Präzision für Ihren Erfolg

Technische Perfektion

- Verwendung von hochwertigen Vergütungs- und Einsatzstählen
- Hohe Fertigungspräzision durch SPC (statistische Prozesskontrolle)
- Qualitätssicherung durch ISO 9001
- Optimierung der Qualitätsmerkmale durch spezielle Wärmebehandlung
- Ständige Kontrolle der Ketten auf Maßhaltigkeit und Gelenkigkeit
- Oberflächenbeschichtungen
- Sonderschmierungen
- Spezielle Werkstoffe (z.B. korrosionsbeständig)

Höchste Qualität

- Überdurchschnittliche Lebensdauer
- Hervorragende Verschleißfestigkeit
- Eingeschränkte Längentoleranzen bis 1/6 der DIN-Toleranz
- Eindeutig höhere Bruchkraft als die Norm
- Hohe Dauerfestigkeit
- iwis-Rollenketten sind vorgereckt
- Hochwirksame Erstschmierung

Anwendernutzen

- Längere Wartungsintervalle
- Wartungsfreundlich, leichtes und schnelles Zerlegen
- Weniger Stillstandzeiten
- Exakter Parallel- und Synchronlauf
- Größerer Spielraum bei der Dimensionierung
- Hochpräzise Positionierung
- Hohe Laufruhe
- Sicherheitsreserven bei Belastungsspitzen
- Verringerte Einlauflängung, kleinere Spannwege

Einige Anwendungsgebiete

- Druckmaschinen
- Papierherstellungs- und Bearbeitungsmaschinen
- Kopiergeräte
- Keramik- und Glasindustrie
- Verpackungsmaschinen
- Medizintechnik

- Textilmaschinen
- Werkzeugmaschinen
- Kunststoffverarbeitungsmaschinen
- Allgemeiner Maschinen- und Anlagenbau
- Holzbearbeitungsmaschinen
- Landmaschinen

- Büromaschinen
- Baustoffmaschinen
- Baumaschinen
- Fördermitteltechnik
- Chemie- und Verfahrenstechnik
- Tuben-Dosen-Industrie

Der perfekte Partner für Ihre Technik

Ein wissenschaftlich orientiertes Unternehmen

iwis verfügt mit mehr als 60 Entwicklungsingenieuren über die größte Forschung und Entwicklungsabteilung für Kettentriebsysteme in Europa. Neben Grundlagenentwicklung und Entwicklung von innovativen kundenspezifischen Lösungen, sind Berechnungen über Konstruktion von Versuch bis hin zu Verschleiß und Dauerfestigkeitsuntersuchungen Hauptbestandteile der Entwicklungsabteilung bei iwis.

- Fundiertes Spezialwissen in Lärmemmissionsanalysen und Schwingungstechnik
- Möglichkeiten im Labor u.a. der Mikroskopie, Metallographie, Ermittlung mechanischer Eigenschaften, chem. Zusammensetzungen und Sonderanalytik
- Dynamische Schwingungs- und Belastungsanalysen von Kettentrieben

- Festigkeitsberechnungen mittels FEM und anderer Tools
- Auswertung von iwis- bzw. Kundenmessungen an Prüfständen zur Verifikation der Simulationsmodelle
- Ermittlung von Kennwerten auch bei unterschiedlichen Temperaturen in Klimakammern

Bruchkraftermittlung und Dehnungsaufnahmen bis 1000 kN

Dauerfestigkeits- und Zeitfestigkeitsüberprüfungen durch mehr als 25 Pulsatoren nach unterschiedlichen Prüfungsverfahren

Untersuchung des Verschleißverhaltens auf mehr als 20 Prüfständen

Problemlösung

Jedes Kundenproblem ist für uns eine Herausforderung. Ob Sie eine spezielle Förderkette benötigen oder etwa eine eigene Kettenkonfiguration mit Integration von Kettenrädern und Führungen in bestehende Module – als Systemhersteller bieten Ihnen unsere Spezialisten individuelle Lösungen an, die weit über die Kette hinaus auf die gesamte Anwendung fokussieren und Ihr Problem ganzheitlich lösen.

Unser Unternehmensbereich Forschung und Entwicklung steht für Kreativität und Innovation, aber auch partnerschaftliche Zusammenarbeit. In enger Kooperation mit unseren Lieferanten und Kunden werden ganzheitliche Lösungen entwickelt, geprüft und gefertigt. Sprechen Sie uns an, wenn Sie ein spezielles Problem haben!

Flexibilität bis zum Äußersten

Lösungen anzubieten, auch für individuelle Kundenprobleme, ist unsere Spezialität und Teil unserer Unternehmensphilosophie. Durch Machbarkeitsstudien im Dialog mit Kunden, die Konstruktion von Bauelementen und die Durchführung von Verformungs- und Spannungsanalysen können bestehende Konstruktionen den individuellen Kundenwünschen angepasst oder neue Kettentriebe entwickelt werden. Mit Schwingungs- und Spannungsanalysen der Komponenten werden dann die physikalischen Eigenschaften der Kettenkonstruktion überprüft. Auf Prüfständen, die die Kettentriebe extremen Belastungen weit über den realen Anforderungen hinaus aussetzen, werden die Prototypen erprobt und auf Haltbarkeit und Lebensdauer überprüft. Unsere Kunden können und müssen sicher sein, dass sie ein Produkt höchster Qualität erhalten – das ist unser Anspruch.

iwis – Ihr starker Partner auch

Die iwis-Gruppe ist weltweit aktiv. Mit eigenen Tochtergesellschaften in England und der Schweiz sowie Standorten in Brasilien, China, Frankreich und USA operiert die iwis-Gruppe international. In mehr als 30 Ländern und auf allen Kontinenten wird iwis über Handelspartner vertrieben.

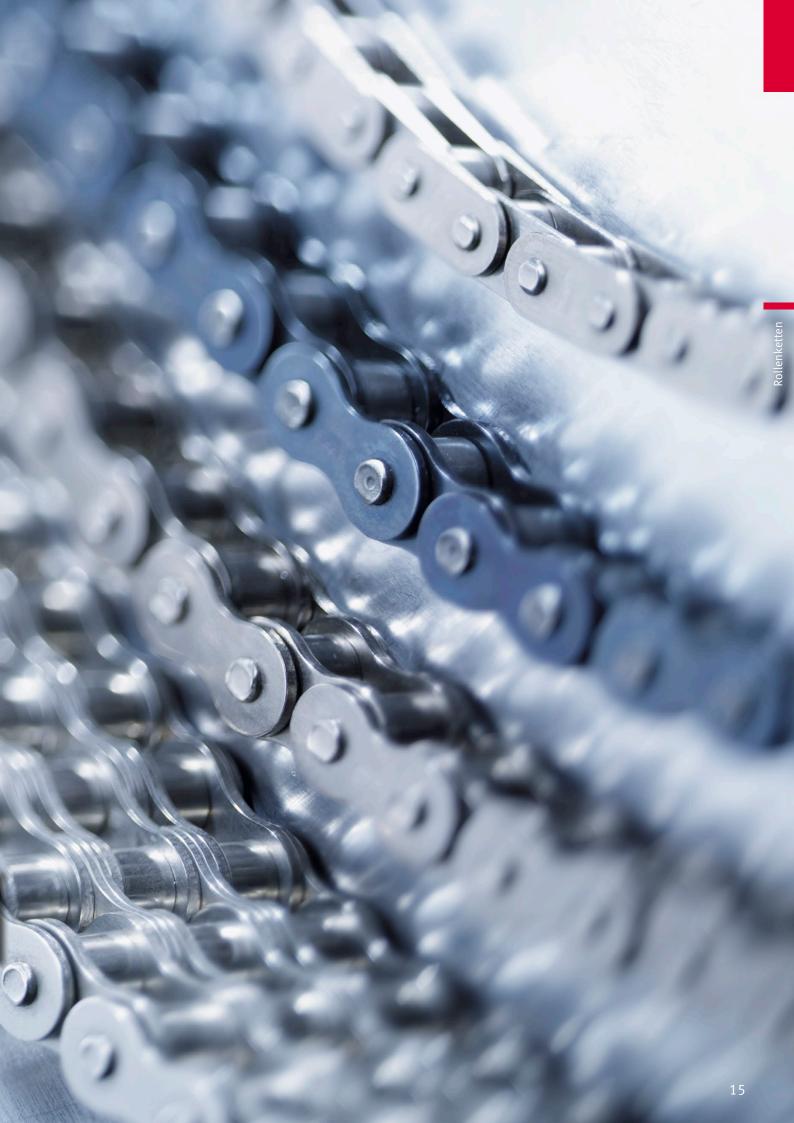
außerhalb von Deutschland

iwis hat die Chancen der Globalisierung frühzeitig erkannt und durch gezielte Positionierung eine Handelsstruktur etabliert, die eine weltweite Versorgung garantiert. So werden nicht nur neue Märkte erschlossen, sondern unsere Kunden können auch bei ihren Auslandsaktivitäten vor Ort auf einen bekannten und zuverlässigen Partner zurückgreifen.

Sie sind uns wichtig, und deshalb unterstützen wir Sie gerne mit Rat und Tat. Lassen Sie sich durch unsere kompetenten Spezialisten im technischen Service Team und unseren engagierten Außendienst beraten. Gerne führen wir für Sie Berechnungen und Kettenauslegungen durch und beraten Sie bei der Wahl der richtigen Ketten für Ihre Anwendungen. Unser Customer Service Team ist jederzeit werktags von 08:00 bis 18:00 Uhr erreichbar.

Übrigens: Wir betreuen Sie gerne auch während der Kettenlaufzeit als verlässlicher Partner in allen Fragen rund um die iwis-Kette.

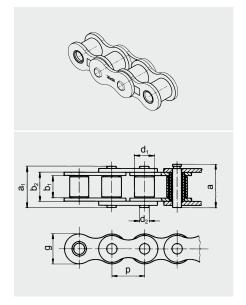
Service für unsere Kunden

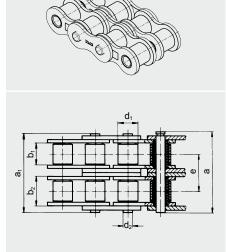


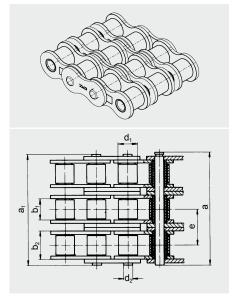
Nollenketten

verfügen über eine überdurchschnittliche Lebensdauer durch hervorragende Verschleißfestigkeit, hohe Gleichmäßigkeit, beispiellose Präzision und eindeutig höhere Bruchkraft und Dauerfestigkeit als die Norm. Alle iwis-Ketten sind vorgereckt und mit einer hochwirksamen Erstschmierung versehen.

iwis-Ketten der SL-Baureihe (Super Longlife) haben Bolzen mit extrem hoher Oberflächenhärte. Diese besondere Ausführung ermöglicht hervorragende Eigenschaften: höchste Resistenz gegen Verschleiß, eine längere Lebensdauer, unverändert hohe Bruchkraft und Dauerfestigkeit, eine geringere Empfindlichkeit bei Mangelschmierung durch Notlaufeigenschaften und geringere Anfälligkeit gegen Korrosion und Passungsrostbildung in den Kettengelenken.


TWIS Rollenketten


nach ISO 606 (DIN 8187) und Werksnorm


05)	iwis specific	Handelsberger	St. os. Jakinjoj	Bruchkatt	Bruchkak	Selentris.	Sewichton	6 (mm) 5 m		nnenglied	, way.	Außer	_ /	80/2eng (mm)
Einfach														
04	G 42	6 x 2,8 mm	6,00	3.200	3.000	0,07	0,12	2,80	4,10	5,00	6,70	7,60	4,00	1,85
05 B-1	G 52	8 mm x 1/8"	8,00	6.000	4.400	0,11	0,18	3,16	4,85	7,10	8,10	9,20	5,00	2,31
-	G 53 HZ ^{1) 3)}	8 mm x 3/16"	8,00	8.500	-	0,25	0,34	4,76	7,90	7,60	11,70	-	5,00	3,15
06 B-1	G 67 1)	3/8 x 7/32"	9,525	10.500	8.900	0,28	0,41	5,72	8,53	8,20	12,90	14,10	6,35	3,31
-	P 83 V	1/2 x 3/16"	12,70	15.500	-	0,29	0,44	4,88	7,97	10,20	13,20	14,10	7,75	3,68
-	S 84 V	1/2 x 1/4"	12,70	18.000	-	0,38	0,58	6,40	9,65	12,00	15,00	16,00	7,75	3,97
08 B-1	L 85 SL*	1/2 x 5/16"	12,70	22.000	17.800	0,50	0,70	7,75	11,30	11,80	16,90	18,50	8,51	4,45
10 B-1	M 106 SL*	5/8 x 3/8"	15,875	27.000	22.200	0,67	0,95	9,65	13,28	14,40	19,50	20,90	10,16	5,08
12 B-1	M 127 SL*	3/4 x 7/16"	19,05	32.700	28.900	0,89	1,25	11,75	15,62	16,40	22,70	23,60	12,07	5,72
16 B-1	M 1611*	1" x 17 mm	25,40	75.000	60.000	2,10	2,70	17,02	25,45	21,10	36,10	36,90	15,88	8,28
20 B-1	M 2012	1 1/4 x 3/4"	31,75	120.000	95.000	2,92	3,72	19,56	29,01	25,40	40,50	46,30	19,05	10,19
24 B-1	M 2416	1 1/2 x 1"	38,10	211.000	160.000	5,50	7,05	25,40	37,92	33,50	53,10	60,00	25,40	14,63
28 B-1	M 2819	1 3/4 x 31 mm	44,45	250.000	200.000	7,35	8,96	30,95	46,58	37,00	63,60	69,90	27,94	15,90
32 B-1	M 3219	2" x 31 mm	50,80	315.000	250.000	8,05	10,00	30,95	45,57	42,30	65,10	70,10	29,21	17,81

 $^{^{1)}}$ Laschenform gerade $^{-2)}$ bei gekröpften Gliedern abweichende Maße $^{-3)}$ Hülsenkette

* Rollenketten mit Ansatzbolzen "easy break" – leichte Zerlegbarkeit der Ketten Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann.

TWIS Rollenketten

nach ISO 606 (DIN 8187) und Werksnorm

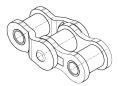
	/	8 / 14	\$ /	//	/	/	/	/		Innenglie	/	~	nglied	/	/ /
	imis. Bes.	Handelssechnung Reilingseceichnung		Bruchkan	Bruchkied W	Selenklije, N.	Gewicht Dr.	mo (m/s) .	inii.	S(mm).	Town (W)	a (mm).	Rolle 4: 3	max.	Spurmetic
150	iwi,	Han leift	Peilly	Bright	Buy's		Sewichto	0, 0,	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	S (M)	, o,	o (m)	Polle	80/20 J.	Sparings
Zweifa															
05 B-2	D 52	8 mm x 1/8"	8,00	9.100	7.800	0,22	0,36	3,16	4,85	7,10	13,90	15,00	5,00	2,31	5,64
06 B-2	D 67 1) *	3/8 x 7/32"	9,525	20.000	16.900	0,56	0,78	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24
08 B-2	D 85 SL*	1/2 x 5/16"	12,70	40.000	31.100	1,00	1,35	7,75	11,30	11,80	30,80	32,40	8,51	4,45	13,92
10 B-2	D 106 SL*	5/8 x 3/8"	15,875	56.000	44.500	1,34	1,85	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59
12 B-2	D 127*	3/4 x 7/16"	19,05	68.000	57.800	1,78	2,50	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46
16 B-2	D 1611*	1" x 17 mm	25,40	150.000	106.000	4,21	5,40	17,02	25,45	21,10	68,00	68,80	15,88	8,28	31,88
20 B-2	D 2012	1 1/4 x 3/4"	31,75	210.000	170.000	5,84	7,36	19,56	29,01	25,40	79,70	82,90	19,05	10,19	36,45
24 B-2	D 2416	1 1/2 x 1"	38,10	370.000	280.000	11,00	13,85	25,40	37,92	33,50	101,80	106,50	25,40	14,63	48,36
28 B-2	D 2819	1 3/4" x 31 mm	44,45	500.000	360.000	14,70	18,80	30,95	46,58	37,00	124,70	129,20	27,94	15,90	59,56
32 B-2	D 3219	2" x 31 mm	50,80	530.000	450.000	16,10	19,80	30,95	45,57	42,30	126,00	128,30	29,21	17,81	58,55
Dreifac	h														
08 B-3	TR 85*	1/2 x 5/16"	12,70	58.000	44.500	1,50	2,00	7,75	11,30	11,80	44,70	46,30	8,51	4,45	13,92
10 B-3	TR 106*	5/8 x 3/8"	15,875	80.000	66.700	2,02	2,80	9,65	13,28	14,40	52,50	54,00	10,16	5,08	16,59
12 B-3	TR 127*	3/4 x 7/16"	19,05	100.000	86.700	2,68	3,80	11,75	15,62	16,40	61,50	62,50	12,07	5,72	19,46
16 B-3	TR 1611*	1" x 17 mm	25,40	220.000	160.000	6,32	8,00	17,02	25,45	21,10	99,20	100,70	15,88	8,28	31,88
20 B-3	TR 2012	1 1/4 x 3/4"	31,75	315.000	250.000	8,76	11,00	19,56	29,01	25,40	116,10	119,40	19,05	10,19	36,45
24 B-3	TR 2416	1 1/2 x 1"	38,10	560.000	425.000	16,50	20,31	25,40	37,92	33,50	150,20	155,40	25,40	14,63	48,36
28 B-3	TR 2819	1 3/4" x 31 mm	44,45	750.000	530.000	22,05	28,00	30,95	46,58	37,00	184,60	188,90	27,94	15,90	59,56
32 B-3	TR 3219	2" x 31 mm	50,80	795.000	670.000	24,15	29,60	30,95	45,57	42,30	184,50	186,50	29,21	17,81	58,55
7207	5217	2 ,, ,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	50,00	, , , , , , ,	0,0.000	- 1,13	27,00	50,55	.5,57	,2,50	10 1,50	200,50	->,21	27,01	30,33

¹⁾ Laschenform gerade 2) bei gekröpften Gliedern abweichende Maße

Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann.

EINZELTEILE UND VERBINDUNGSGLIEDER

Normbezeichnung B Innenglied


Normbezeichnung E Steckglied mit Federverschluss

Normbezeichnung S Steckglied mit Splintverschluss

Normbezeichnung L Gekröpftes Glied mit Splintverschluss

Normbezeichnung C Gekröpftes Doppelglied

Normbezeichnung A Außenglied

^{*} Rollenketten mit Ansatzbolzen "easy break" – leichte Zerlegbarkeit der Ketten

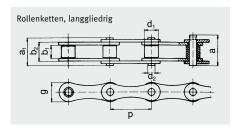
उ ** Rollenketten, ANSI-Standard

nach ISO 606 (DIN 8188)

	/	& /	8		/ /	/	/	/ ,	/ ,	/	Innenglie	/	/	nglied	/	/ /
	im; Bezeigh,		Teiling Teiling	Tellung	Bruchkaff	Bruchkaff	Solonker:	Sewichtor	100	b (min.	not.	of (M _M)	Not. of	to.	80/2en	Sourveite (mm)
0	, s,	S/8,8			Bruchkaft		lenkel		6 (mm) 6		S(mm)		a (mm)	A 40/10 A 40/1	1 (MIII) 11 (MIIII) 11 (MIIII	Spurveite (MM)
950	., ½	F	1,00	10	8.7	\$ 5	\ \(\mathref{g}\)\(\infty\)	3 6	0,	\ \phi_{\sigma}	90	0,	9	\$0,0	1 80 P	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Einfach	C 42 A	25.1	1/4	(25	4 000	2.500	0.11	0.12	2.10	4.00	F 00	7.020	0.62	2.20	2.21	
04 C-1	G 42 A	25-1	1/4	6,35	4.909	3.500	0,11	0,13	3,18	4,80	5,80	7,820	8,62	3,30	2,31	-
06 A-1	G 67 A	35-1	3/8	9,55	10.983	7.900	0,27	0,32	4,78	7,46	9,04	11,96	12,93	5,08	3,60	-
08 A-1	L 85 A	40-1	1/2	12,70	18.000	13.900	0,44	0,60	7,92	11,17	12,06	16,60	18,54	7,95	3,98	_
10 A-1 12 A-1	M 106 A M 128 A SL ¹⁾	50-1	5/8	15,875	29.000	21.800	0,70	1,01	9,53	13,84	15,08	20,40	22,55	10,16	5,09	_
		60-1	3/4	19,05	42.000	31.300	1,06	1,47	12,70	17,75	18,09	25,44	27,99	11,91	5,96	
16 A-1	M 1610 A	80-1	1 1 1 / 4	25,40	68.000	55.600	1,79	2,57	15,88	22,60	24,13	33,0	35,0	15,88	7,94	_
20 A-1	M 2012 A	100-1	1 1/4	31,75	112.776	87.000	2,62	3,95	19,05	27,45	30,16	39,68	43,98	19,05	9,54	_
24 A-1	M 2416 A	120-1	1 1/2	38,10	152.984	125.000	3,94	5,64	25,40	35,45	36,19	51,06	55,36	22,23	11,11	_
28 A-1	M 2819 A	140-1	1 3/4	44,45	205.940	170.000	4,73	7,38	25,40	37,18	42,22	54,54	59,44	25,40	12,71	-
32 A-1	M 3219 A	160-1	2	50,80	256.934	223.000	6,46	9,40	31,55	45,21	48,26	65,52	69,82	25,58	14,29	_
36 A-1	M 3623 A	180-1	2 1/4	57,15	374.614	281.000	8,88	12,67	35,71	50,85	54,29	73,28	78,78	35,71	17,46	_
40 A-1	M 4024 A	200-1	2 1/2	63,50	485.429	347.000	10,89	15,90	38,10	54,88	60,32	80,70	86,70	39,68	19,85	_
48 A-1	M 4830 A	240-1	3	76,20	686.466	500.000	16,15	24,40	47,63	67,81	72,39	98,70	104,70	47,63	23,81	_
Zweifacl	h															
04 C-2	D 42 A	25-2	1/4	6,35	9.218	7.000	0,22	0,25	3,18	4,80	5,80	14,22	15,02	3,30	2,31	6,40
06 A-2	D 67 A	35-2	3/8	9,53	21.967	15.800	0,56	0,63	4,78	7,46	9,04	22,42	23,12	5,08	3,60	10,13
08 A-2	D 85 A	40-2	1/2	12,70	36.000	27.800	0,88	1,22	7,92	11,17	12,06	31,00	32,98	7,95	3,98	14,38
10 A-2	D 106 A	50-2	5/8	15,875	56.000	43.600	1,40	2,00	9,53	13,84	15,08	38,60	40,72	10,16	5,09	18,11
12 A-2	D 128 A 1)	60-2	3/4	19,05	84.000	62.600	2,12	2,90	12,70	17,75	18,09	48,20	50,83	11,91	5,96	22,78
16 A-2	D 1610 A	80-2	1	25,40	145.000	111.200	3,58	5,05	15,88	22,60	24,13	62,20	64,30	15,88	7,92	29,29
20 A-2	D 2012 A	100-2	1 1/4	31,75	225.553	174.000	5,24	7,86	19,05	27,45	30,16	76,28	79,18	19,05	9,54	35,76
24 A-2	D 2416 A	120-2	1 1/2	38,10	305.967	250.000	7,88	11,20	25,40	35,45	36,19	96,26	100,46	22,23	11,11	45,44
28 A-2	D 2819 A	140-2	1 3/4	44,45	411.879	340.000	9,46	14,66	25,40	37,18	42,22	103,14	108,54	25,40	12,71	48,87
32 A-2	D 3219 A	160-2	2	50,80	249.089	446.000	12,92	18,64	31,55	45,21	48,26	124,82	127,62	25,58	14,29	58,55
36 A-2	D 3623 A	180-2	2 1/4	57,15	749.228	562.000	17,76	25,14	35,71	50,85	54,29	139,12	144,62	35,71	17,46	65,84
40 A-2	D 4024 A	200-2	2 1/2	63,50	970.858	694.000	21,78	31,60	38,10	54,88	60,32	152,30	158,30	39,68	19,85	71,55
48 A-2	D 4830 A	240-2	3	76,20	1.372.931	1.000.000	32,30	48,40	47,63	67,81	72,39	186,60	192,50	47,63	23,81	87,83
Dreifach																
04 C-3	TR 42 A	25-3	1/4	6,35	13.827	10.500	0,33	0,37	3,18	4,80	5,80	21,06	21,86	3,30	2,31	6,40
06 A-3	TR 67 A	35-3	3/8	9,53	32.950	23.700	0,81	0,94	4,78	7,46	9,04	32,18	33,28	5,08	3,60	10,13
08 A-3	TR 85 A	40-3	1/2	12,70	50.000	41.700	1,32	1,82	7,92	11,17	12,06	45,40	47,36	7,95	3,98	14,38
10 A-3	TR 106 A	50-3	5/8	15,875	80.000	65.400	2,10	2,89	9,53	13,84	15,08	56,70	58,93	10,16	5,09	18,11
12 A-3	TR 128 A	60-3	3/4	19,05	125.000	93.900	3,18	4,28	12,70	17,75	18,09	71,10	73,71	11,91	5,96	22,78
16 A-3	TR 1610 A	80-3	1	25,40	210.000	166.800	5,37	7,54	15,88	22,60	24,13	91,40	93,50	15,88	7,94	29,29
20 A-3	TR 2012 A	100-3														
24 A-3			1 1/4	31,75	338.329	261.000	7,86	11,75	19,05	27,45	30,16	112,98	115,88	19,05	9,54	35,76
24 A-3 28 A-3	TR 2416 A	120-3 140-3	1 1/2	38,10	458.951	375.000 510.000	11,82	16,73	25,40	35,45	36,19	140,86	145,96	22,23	11,11	45,44 48,87
	TR 2819 A		1 3/4	44,45	617.819		14,19	21,93	25,40	37,18	42,22	152,24	157,24	25,40	12,71	
32 A-3	TR 3219 A	160-3	2 1/4	50,80	770.803	669.000	19,38	27,89	31,55	45,21	48,26	183,52	185,52	25,58	14,29	58,55
36 A-3	TR 3623 A	180-3	2 1/4	57,15	1.123.842		26,64	37,60	35,71	50,85	54,29	210,45	210,46	35,71	17,46	65,84
40 A-3	TR 4024 A	200-3	2 1/2	63,50	1.456.288		32,67	47,30	38,10	54,88	60,32	223,80	229,80	39,68	19,85	71,55
48 A-3	TR 4830 A	240-3	3	76,20	2.059.397	1.500.000	48,45	72,40	47,63	67,81	72,39	274,40	280,40	47,63	23,81	87,83

¹⁾ auch mit gerader Laschenform lieferbar ²⁾ bei gekröpften Gliedern abweichende Maße

ত্ত Rollenketten, langgliedrig

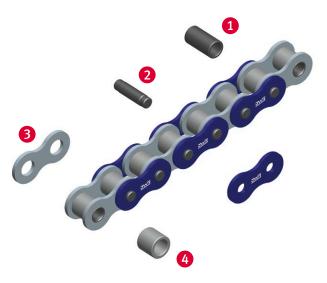

nach ISO 1275 (DIN 8181)

05/	imisseceich	ANS. R.	Tell.	7611Uns	Sp (mm) Bruchkap	Bruchkar Wing Kar	Selenters	Gewichtn.	on on one of the one o	/	Innenglie	/	not. &	englied **	Bolzen G Gen	Sourweite e (mm)
Rollenk	etten, langglie	edrig														
208 B	LR 165 SL *	-	1	25,40	22.000	18.000	0,50	0,52	7,75	11,30	11,80	16,90	18,60	8,51	4,45	-
210 B	LR 206 SL*	-	1 1/4	31,75	28.000	22.400	0,67	0,63	9,65	13,28	15,10	19,50	20,80	10,16	5,08	-
212 B	LR 247 SL*	_	1 1/2	38,10	34.000	29.000	0,89	0,85	11,75	15,62	16,10	22,70	24,10	12,07	5,72	-
216 B	LR 3211	-	2	50,80	75.000	60.000	2,10	1,77	17,02	25,45	20,60	36,10	38,10	15,88	8,28	-

Bei Einbau von gekröpften Gliedern ist zu

besonders verschleißfesten Bolzen.

beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann. Der Zusatz leichte Zerlegbarkeit der Ketten SL (super longlife) kennzeichnet Ketten mit



TWIS Hochleistungsketten

Qualitätsprodukte von Weltruf

DER WEG ZUR HOHEN QUALITÄT – JEDES EINZELTEIL TECHNISCH PERFEKT


- Verwendung von ausschließlich hochwertigen Vergütungs- und Einsatzstählen mit Sondervorschriften für Werkstoffanalyse, Toleranzen und Oberflächengüte
- Jedes Kettenteil wird täglich millionenfach mit gleicher Präzision gefertigt und durch SPC (Statistische Prozess Kontrolle) überwacht
- Alle Kettenteile sind wärmebehandelt, teilweise mit speziellen Verfahren zur Optimierung der Qualitätsmerkmale
- Gleichmäßige Geometrie und hohe Oberflächengüte durch Einsatz moderner Fertigungstechnologien
- Kontrolle der Ketten auf Maßhaltigkeit, Längengenauigkeit und Gelenkigkeit, Überprüfung der Presssitze der Fügestellen Bolzen – Außenlaschen und Hülse – Innenlasche
- Der hohe Standard der Qualitätssicherung erfüllt die Anforderungen der ISO 9001
- Für spezielle Anwendungen
 - Oberflächenbeschichtungen
 - Sonderschmierungen
 - spezielle Werkstoffe (z.B. korrosionsbeständig)

- 1 iwis-Hülse mit absolut zylindrischer Form, je nach Anwendung nahtlos oder gewickelt, als geschlossener Zylinder gefertigt mit extrem niedriger Oberflächenrauheit
- iwis-Bolzen mit Ansatz (ISO 606), Ketten in SL-Ausführung haben Bolzen mit noch höherer Resistenz gegen Verschleiß
- 3 iwis-Lasche optimal dimensioniert, präzise geformt und auf Zähigkeit und Härte vergütet
- 4 iwis-Rolle nahtlos als geschlossener Zylinder gefertigt und speziell oberflächenbehandelt

¹⁾ auch mit gerader Laschenform lieferbar ²⁾ bei gekröpften Gliedern abweichende Maße

^{*} Rollenketten mit Ansatzbolzen "easy break" -

Förderketten

iwis-Förderketten können speziell auf Ihre Bedürfnisse angepasst werden um die Anforderungen Ihrer Anwendung zu erfüllen. iwis hat nicht nur ein breites Sortiment von speziellen Mitnehmer- und Winkellaschen, sondern wir unterstützen unsere Kunden auch bei der Entwicklung von Sonderanfertigungen.

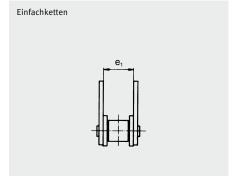
iwis-Förderketten bieten dem Anwender die einwandfreie Funktion parallel bzw. synchron laufender Ketten, können die hochpräzise Positionierung unterstützen, bieten Leichtgängigkeit, eine hohe Laufruhe und eine eindeutig höhere Bruchkraft als die Norm. Weitere Ausführungen sind Förderketten mit verlängerten Bolzen, U-Bügel und Mehrfach-Steckgliedern.

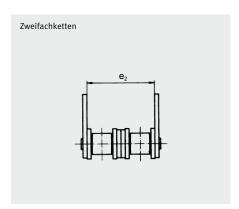
TWIS Förderketten mit Mitnehmerlaschen

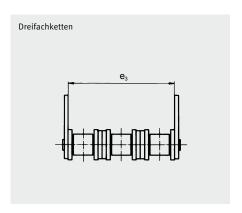
aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188) und ISO 1275 (DIN 8181)

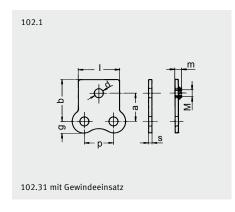
95/	1,00,50,000 (1,00)	Samue (Mos) of	Teilung	(Willy)	6 (mm)	(min)	Einfachter	Zweifachke.	Dreifachter	S(mm) step	(mm)	((mm)	s (mm)	W _(mm)	Gewinde einsatz
Form 1	02.1														
_	P 83 V	1/2	12,7	13,0	19,0	4,2	8,1	_	_	4,5	-	18,0	1,5	_	-
-	S 84 V	1/2	12,7	13,0	19,0	4,2	9,8	-	-	4,5	-	18,0	1,5	-	-
08 B-1	L 85 SL 1)	1/2	12,7	13,0	19,0	4,2	11,6	25,5	39,4	5,4	-	18,0	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	16,3	24,3	5,2	13,6	30,1	46,6	6,8	-	24,0	1,6	5	5,3
12 B-1	M 127 SL 1)	3/4	19,05	19,1	29,1	6,2	15,9	35,3	54,7	7,4	-	28,0	1,8	5	5,5
16 B-1	M 1611 1)	1	25,4	24,6	36,6	8,2	25,9	57,8	89,7	10,4	-	36,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	13,0	19,0	4,2	11,4	25,8	40,2	4,5	-	18,0	1,5	_	_
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	16,3	24,3	5,2	14,1	32,3	50,4	6,8	-	24,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	19,1	29,1	6,2	18,1	40,8	63,6	7,4	-	28,0	2,4	_	-
16 A-1 ANSI 80	M 1610 A 1)	1	25,4	24,6	36,6	8,2	23,0	52,2	81,5	10,4	-	36,2	3,0	-	-
Form 1	03.1 und 103.2														
-	P 83 V ²⁾	1/2	12,7	17,0	23,0	4,2	8,1	_	-	4,5	12,7	23,6	1,5	-	-
-	S 84 V	1/2	12,7	17,0	23,0	4,2	9,8	-	-	4,5	12,7	23,6	1,5	-	-
08 B-1	L 85 SL 1)	1/2	12,7	17,0	23,0	4,2	11,6	25,5	39,4	5,4	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	16,3	25,8	5,2	13,6	30,1	46,6	7,5	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL 1)	3/4	19,05	18,3	29,0	6,2	15,9	35,3	54,7	9,0	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 1)	1	25,4	28,45	41,55	8,2	25,9	57,8	89,7	10,35	25,4	47,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	17,0	23,0	4,2	11,4	25,8	40,2	4,5	12,7	23,6	1,5	-	-
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	16,3	25,8	5,2	14,1	32,3	50,4	7,5	15,8	31,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	18,3	29,0	6,2	18,1	40,8	63,6	9,0	19,0	37,2	2,4	-	_
16 A-1 ANSI 80	M 1610 A ¹⁾	1	25,4	28,45	41,55	8,2	23,0	52,2	81,5	10,35	25,4	47,2	3,0	-	-
Form 1	01.1 und 101.2														
208 B	LR 165 SL	1	25,4	14,3	20,5	4,2	11,6	_	_	6,5	14,0	24,2	1,5	_	_
210 B	LR 206 SL	1 1/4	31,75	16,3	25,8	5,2	13,8	_	_	7,5	18,0	30,2	1,6	_	_
212 B	LR 247 SL	1 1/2	38,1	19,2	29,5	6,2	15,9	_	_	9,0	20,0	36,2	1,7	_	_
216 B	LR 3211	2	50,8	28,5	40,6	8,2	25,9	-	_	10,2	28,0	48,2	3,0	_	_

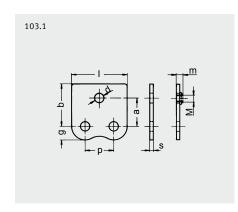
 $^{^{1)}}$ auch für die entsprechenden Zweifach- und Dreifachketten $^{-2)}$ Nennteilung

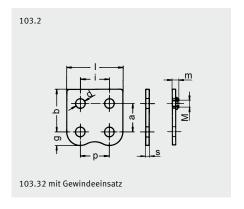

Förderketten

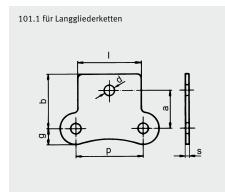

TWIS Förderketten mit Mitnehmerlaschen

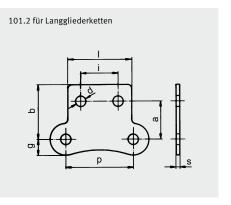

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188) und ISO 1275 (DIN 8181)


MITNEHMERLASCHEN


Die abgebildeten Typen sind auch als Steckglieder und Außenglieder ein- und beidseitig verfügbar. Mitnehmerlaschen mit abweichenden Gewindeeinsätzen auf Anfrage.





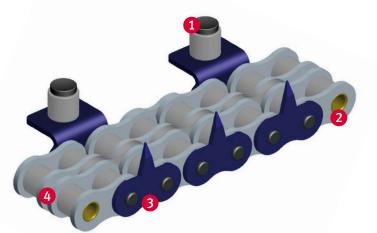


Förderketten

Spitzlaschenketten für die Thermoforming-Branche

SPEZIALPRÄZISIONSKETTEN

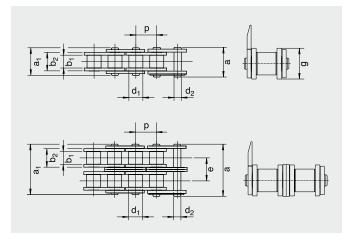
Unsere Förderketten werden kunden- und


iwis-Förderketten können den besonderen individuellen Anforderungen Ihrer Anwendung angepasst werden. Zusätzlich zur breiten Palette spezieller gerader und gebogener Spitzlaschen bietet iwis sei-

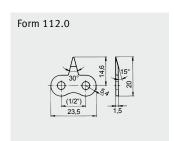
nen Kunden auch Unterstützung bei der

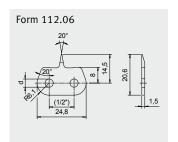
Entwicklung eigener Lösungen.

INDIVIDUELLE FÖRDERKETTEN

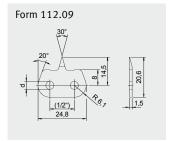

anwendungsspezifisch entwickelt und können entweder mit Standardkomponenten konstruiert oder aus eigens entwickelten Produkten zusammengestellt werden. Wir präsentieren vor diesem Hintergrund unsere weltweit eingesetzten und maßgeschneiderten Thermoformketten, die in allen Thermoformverpackungsanwendungen ein Höchstmaß an Präzision, Qualität und Langlebigkeit bieten.

HIGHLIGHTS

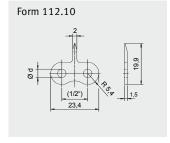

- 1 Stützrollen und verschleißfeste speziell entwickelte fließgepresste Kopfbolzen für genaue Folienausrichtung.
- 2 SL (super longlife) wärmebehandelte easy break Ansatzbolzen für niedrigen Verschleiß und erhöhte Präzision.
- 3 Die optimierte Form der gehärteten Spitzlaschenprofile bietet die beste Lösung zur Verarbeitung Ihres Thermoformmaterials und optimale Lebensdauer der Kette.
- 4 Speziell entwickelte Mittellaschen reduzieren Transversalkräfte innerhalb der Kette und verhindern somit die Kettenstreckung bei gleichzeitiger Verlängerung der Lebensdauer.



ÜBERSICHT VERFÜGBARER iwis-SONDERMITNEHMERLASCHEN



Art. 50002138FD85SL mit 112.0: **Art. 50018836**


FL85SL mit 112.0:

FD85SL mit 112.06: **Art. 50019757**

FD85SL mit 112.09: **Art. 50028230**

Mehrere Varianten

WEITERE PRODUKTVORTEILE

- Sonderschmierungen für unterschiedlichste Applikationen verfügbar
- Eingeschränkte
 Längentoleranzen und/oder
 gepaarte Kettenausführung
 für maximalen Gleichlauf
 möglich
- Kundenindividuelle Sonderlösungen, mit oder ohne Stützrollen
- MEGAlife-, Seitenbogen- und ANSI-Versionen verfügbar

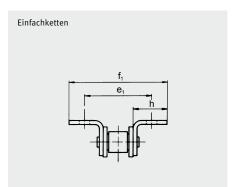
TWIS Förderketten mit Winkellaschen

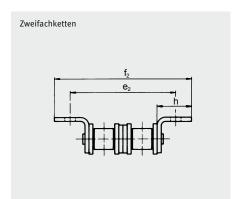
aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188) und ISO 1275 (DIN 8181)

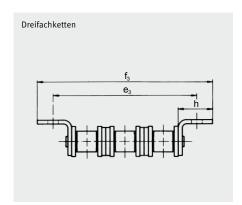
		Sunuy	/ т	eilung /	/ ,	/ /	/ Einfac	hketten	/ Zweifa	chketten	/ Dreifac	chketten	/	/	/ ,	/ ,		Gew
950	imis Beso.	0/5	(mo) (mi) (mi)		(Min.)	(4)						(m.) 88	m. 4			S (m.	(wii.)	(ww)
Form 2																		
-	P 83 V	1/2	12,7	8,0	4,2	24,1	36,1	-	_	-	-	4,5	14,0	-	18,1	1,5	-	-
-	S 84 V	1/2	12,7	8,0	4,2	25,8	37,8	-	-	-	-	4,5	14,0	-	18,1	1,5	-	-
08 B-1	L 85 SL 1)	1/2	12,7	8,0	4,2	27,6	39,6	41,5	53,5	55,4	67,4	5,4	14,0	-	18,1	1,5	4	5,2
10 B-1	M 106 SL 1)	5/8	15,875	9,0	5,2	33,6	49,6	50,1	66,1	66,6	82,6	6,8	18,0	-	24,0	1,6	5	5,3
12 B-1	M 127 SL 1)	3/4	19,05	10,0	6,2	41,1	61,1	60,5	80,5	79,9	99,9	7,4	22,6	-	28,0	1,8	5	5,5
16 B-1	M 1611 1) 2)	1	25,4	16,0	8,2	53,9	77,9	85,8	109,8	117,7	141,7	10,4	26,0	-	36,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1)	1/2	12,7	8,0	4,2	27,4	39,4	41,8	53,8	56,2	68,2	4,5	14,0	-	18,1	1,5	-	_
10 A-1 ANSI 50	M 106 A 1)	5/8	15,875	9,0	5,2	34,1	50,1	52,3	68,3	70,4	86,4	6,8	18,0	-	24,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1)	3/4	19,05	13,0	6,2	38,9	58,9	61,6	81,6	84,4	104,4	7,4	20,4	-	28,0	2,4	-	-
16 A-1 ANSI 80	M 1610 A 1) 2)	1	25,4	16,0	8,2	51,0	75,0	80,2	104,2	109,5	133,5	10,4	26,0	-	36,2	3,0	-	-
Form 2	03.1 und 203	3.2																
-	P 83 V ²⁾	1/2	12,7	9,5	4,2	29,1	41,1	-	-	-	-	4,5	16,5	12,7	23,6	1,5	-	-
-	S 84 V ²⁾	1/2	12,7	9,5	4,2	30,8	42,8	_	-	-	-	4,5	16,5	12,7	23,6	1,5	-	-
08 B-1	L 85 SL 1) 2)	1/2	12,7	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL 1) 2)	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL 1) 2)	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 1) 2)	1	25,4	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2
08 A-1 ANSI 40	L 85 A 1) 2)	1/2	12,7	9,5	4,2	32,4	44,4	46,8	58,8	61,2	73,2	4,5	16,5	12,7	23,6	1,5	-	-
10 A-1 ANSI 50	M 106 A 1) 2)	5/8	15,875	11,0	5,2	31,1	50,1	49,3	68,3	67,3	86,4	7,5	18,0	15,8	31,0	1,6	-	-
12 A-1 ANSI 60	M 128 A SL 1) 2)	3/4	19,05	13,0	6,2	37,3	58,7	60,0	81,4	82,8	104,2	9,0	20,3	19,0	37,2	2,4	-	-
16 A-1 ANSI 80	M 1610 A ^{1) 2)}	1	25,4	18,0	8,2	54,8	81,0	84,0	110,2	113,3	139,5	10,4	29,0	25,4	47,2	3,0	-	-
Form 2	01.1 und 201	1.2																
	LR 165 SL 2)	1	25,4	10,0	4,2	26,2	38,6	-	-	-	-	6,5	13,5	14,0	24,2	1,5	-	-
208 B	LK 165 SL-7		,												1	1		
208 B 210 B	LR 206 SL ²⁾	1 1/4	31,75	11,0	5,2	30,6	49,6	_	-	-	-	7,5	18,0	18,0	30,2	1,6	-	-
				11,0 13,0	5,2 6,2	30,6 34,9	49,6 55,5	-	-	-	-	7,5 9,0	18,0 19,8	18,0 20,0	30,2 36,2	1,6 1,7	-	-

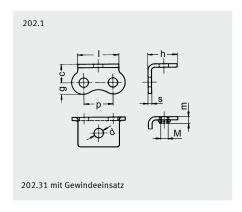
¹⁾ auch für die entsprechenden Zweifach- und Dreifachketten ²⁾ Montage der Winkellaschen auch über die Kette nach innen möglich

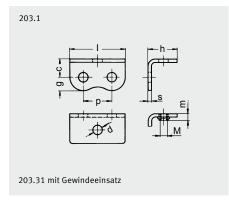
Förderketten

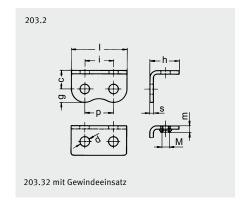

TVVIS Förderketten mit Winkellaschen

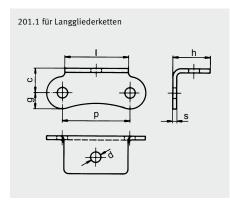

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188) und ISO 1275 (DIN 8181)

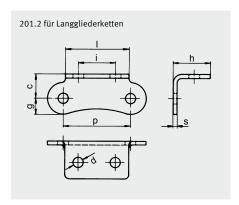

WINKELLASCHEN

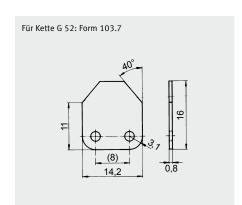

Die abgebildeten Typen sind auch als Steckglieder und Außenglieder ein- und beidseitig verfügbar. Winkellaschen mit Gewindeeinsatz können nicht über die Kette nach innen montiert werden.

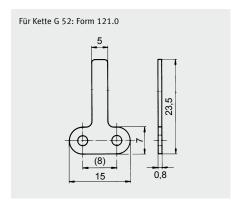

Abweichende Gewindemaße auf Anfrage.

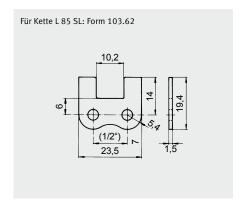


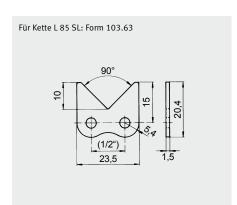


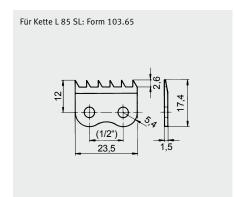


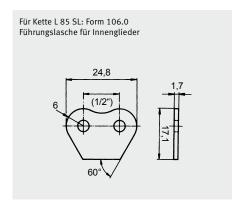


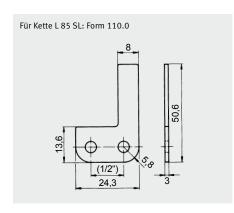


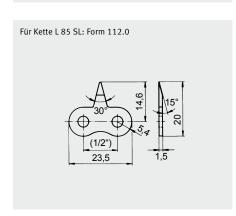


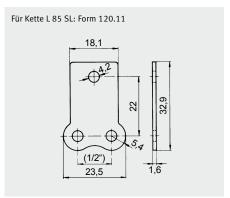

TVIS Förderketten

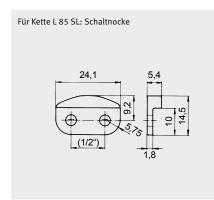

Sondermitnehmerlaschen – Beispiele

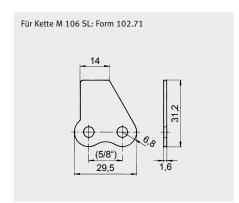


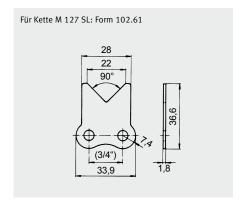


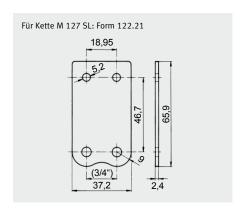


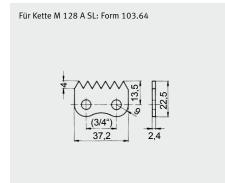


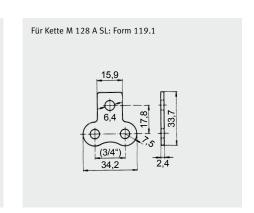


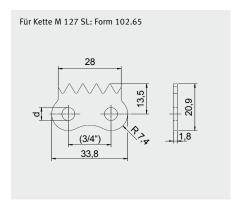


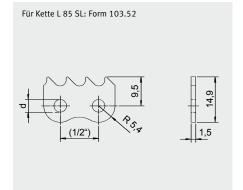


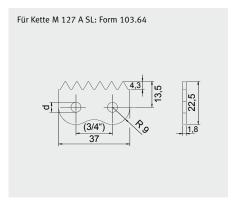


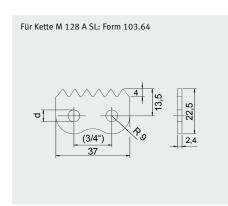


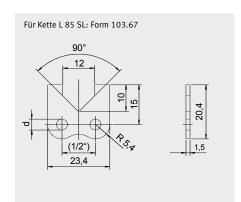


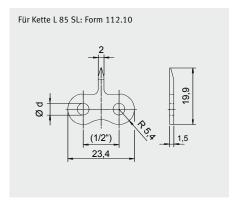

TVIS Förderketten

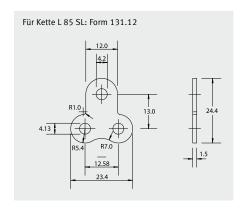

Sondermitnehmerlaschen – Beispiele

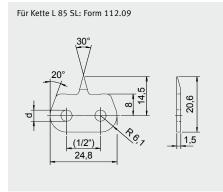


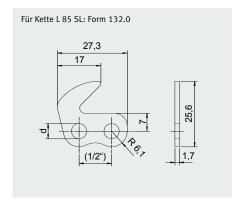


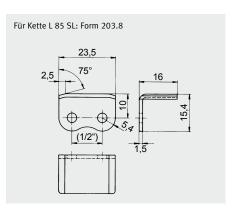


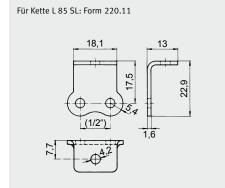


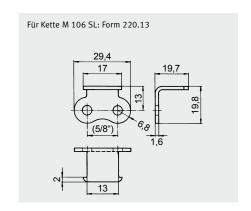


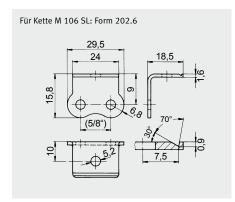


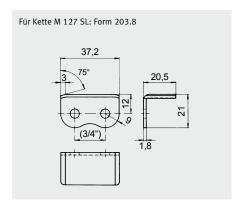


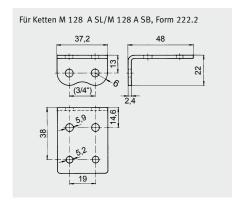


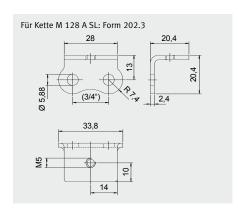


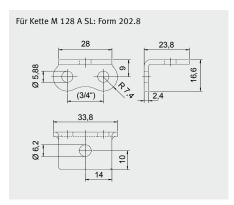


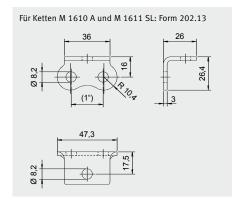

TWIS Förderketten

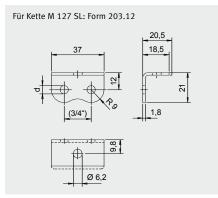

Sonderwinkellaschen – Beispiele

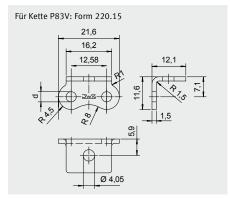






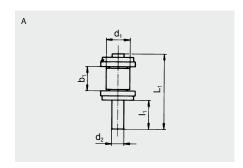


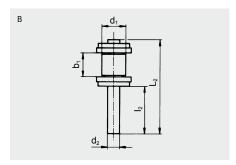


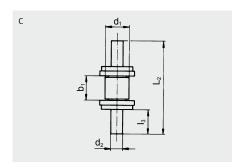


Ähnliche Laschenformen für andere Kettentypen sowie andere Laschenformen auf Anfrage. Mindestabnahmemengen bei einigen Sonderlaschen auf Anfrage.

TWIS Förderketten mit verlängerten Bolzen

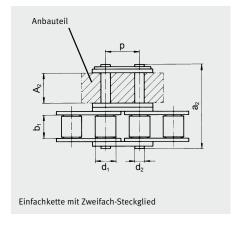

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188) und ISO 1275 (DIN 8181)


8,	imis Bereigh	(No2) a	Teilung	Breite imen	Rollengurchme,	Bokendurch,	(mm)	Ausführung		/	ng B und C
Bolzenfo	orm A, B, C										
05 B-1	G 52	-	8,0	3,16	5,0	2,31	17,5	10,0	27,5	20,0	10,5
06 B-1	G 67	3/8	9,525	5,72	6,35	3,31	22,0	10,0	34,0	22,0	11,5
-	P 83 V	1/2	12,7	4,88	7,75	3,68	22,0	10,0	37,0	25,0	13,0
08 B-1	L 85 SL	1/2	12,7	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
10 B-1	M 106 SL	5/8	15,875	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
12 B-1	M 127 SL	3/4	19,05	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
16 B-1	M 1611	1	25,4	17,02	15,88	8,28	53,5	20,0	68,5	35,0	18,0
08 A-1 ANSI 40	L 85 A	1/2	12,7	7,94	7,95	3,96	25,5	10,0	45,3	30,0	15,5
10 A-1 ANSI 50	M 106 A	5/8	15,875	9,53	10,16	5,08	31,5	12,0	48,0	29,0	15,0
12 A-1 ANSI 60	M 128 A SL	3/4	19,05	12,70	11,91	5,96	38,0	14,0	48,0	24,0	12,5
16 A-1 ANSI 80	M 1610 A	1	25,4	15,88	15,88	7,92	49,5	19,0	61,3	31,0	16,0
208 B	LR 165 SL	1	25,4	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
210 B	LR 206 SL	1 1/4	31,75	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
212 B	LR 247 SL	1 1/2	38,1	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
216 B	LR 3211	2	50,8	17,02	15,88	8,28	53,5	20,0	68,5	35,0	18,0

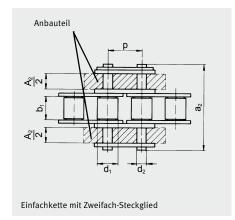

¹⁾ Für Mehrfachketten auf Anfrage. Andere Bolzenlängen und Formen auf Anfrage. *Fertigungsbedingte Abweichungen möglich. Technische Details auf Anfrage erhätlich.

VERLÄNGERTE BOLZEN

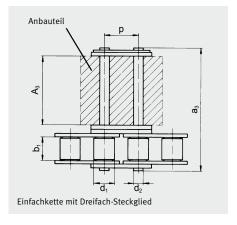
Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich (C nur als Außenglied).


<u>Twis</u> Mehrfachsteckglieder

zur Befestigung von Anbauteilen 1)


95/	IWIS-BROKE	Mozo della superiori della sup	Teilung	Beileim b (mm) en	Rollendirenness	Bolzendurchnece	tage (Mill) &	Breite außen	A Times Times	Blockbreite
Zweifa	ch									
05B-1	G 52	8 mm	7,94	3,16	5,0	2,31	14,9	-	4,0	-
06B-1	G 67	3/8	9,42	5,72	6,35	3,31	24,5	34,6	7,0	17,5
Zweifa	ch / Dreifach	l								
08B-1	L 85 SL	1/2	12,58	7,75	8,51	4,45	32,3	46,2	11,3	25,2
10B-1	M 106 SL	5/8	15,76	9,65	10,16	5,08	37,4	53,9	13,3	29,9
12B-1	M 127 SL	3/4	18,95	11,75	12,07	5,72	42,9	62,4	15,6	35,1
16B-1	M 1611	1	25,27	17,02	15,88	8,28	68,7	100,6	25,5	57,4
08 A-1 ANSI 40	L 85 A	1/2	12,58	7,94	7,95	3,96	31,8	46,2	11,2	25,5
10 A-1 ANSI 50	M 106 A	5/8	15,76	9,53	10,16	5,08	39,8	57,9	13,8	32,0
12 A-1 ANSI 60	M 128 A SL	3/4	18,95	12,70	11,91	5,96	49,4	72,2	17,8	40,6
16 A-1 ANSI 80	M 1610 A	1	25,27	15,88	15,88	7,92	63,2	92,6	22,6	51,9

¹⁾ Wichtig: Bei der Herstellung eines Anbauteils ist das genaue Teilungsmaß »p« zu berücksichtigen.


BEISPIELE

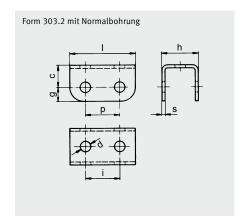
Mehrfachsteckglieder ermöglichen eine elegante und einfache Befestigung von Bauteilen an bestimmten Stellen in den Ketten.

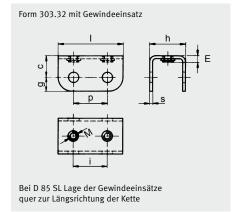
Die einfachste Variante bietet Mehrfachsteckglieder in Einfachketten wie in obigen Skizzen dargestellt.

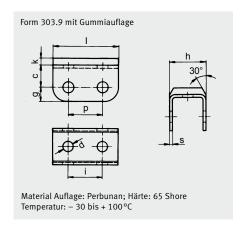
Mehrfachsteckglieder können mit Standardlaschen oder als Fördersteckglieder mit Mitnehmer- und Winkellaschen, ein- oder beidseitig bestückt, geliefert werden.

उ Förderketten mit U-Bügel

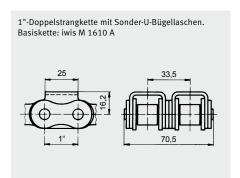
aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188)

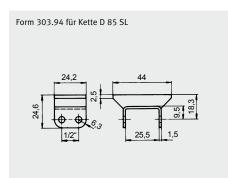

05/	in in S. A.	P (mm)	Teilung					88 mm	4 (mm)		Kinny ,	(wuy),	Smm	W (Milling)	Gewinde- einsatz
U-Büge	elform 303	.2 / 303.3	32 / 303.9	,											
08B-1	L 85 SL	12,7	17,8	19,8	21,5	9,5	4,1	6,3	14,6	12,6	3,0	24,2	1,5	4	5,2
08B-2	D 85 SL	12,7	31,8	33,9	35,5	9,5	4,1	6,3	28,5	13,9	3,0	24,2	1,5	4	5,2
10B-1	M 106 SL	15,875	20,0	22,0	24,0	12,0	4,73	7,5	16,6	15,8	3,0	31,0	1,5	5	5,2
16 A-1 ANSI 80	M 1610 A	25,4	33,7	36,5	38,4	16,2	8,7	10,5	27,3	25,3	5,0	49,2	2,1	6	7,3

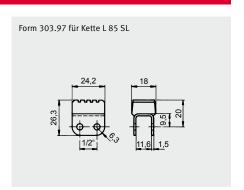



Kettenbreite:

U-Bügel werden zwischen Innen- und Außenlaschen montiert. Die Kettenbreite vergrößert sich gegenüber der Normkette.


a = Bolzenlänge beim Steckglied





SONDERFORMEN

Rapid Service für Förderketten

Der neue Rapid Service von iwis: Das schnelle und flexible Förderkettenprogramm für den kurzfristigen Bedarf ausgewählter Kettentypen. Auch in MEGAlife wartungsfreier Ausführung. Förderketten mit kundenindividuellen Sonder-Anbauteilen können ab sofort auch in kleinen Mengen schnell und kurzfristig gefertigt werden. Und das in gewohnt hoher JWIS-Qualität! Das gibt es nur bei iwis.

wir bewegen die welt

೨√√™ Rapid Service für Förderketten

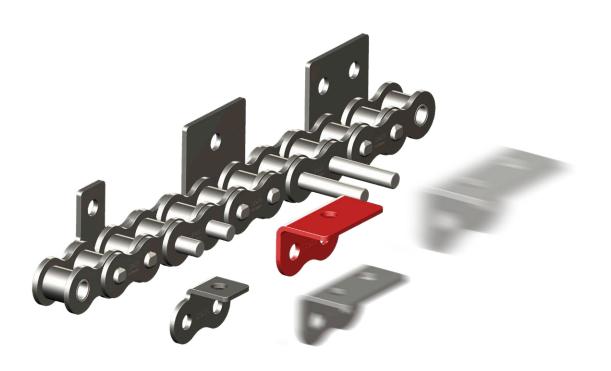
Express-Fertigung für eilige Ketten!

RAPID SERVICE

Rapid Service für Förderketten

Um Ihnen mehr Flexibilität für Ihren kurzfristigen Bedarf an Rollenketten mit Anbauteilen zu bieten, hat iwis neue Fertigungszweige eingeführt.

Die neuen Fertigungszweige ermöglichen schnellste Lieferzeiten und hohe Flexibilität für Mindermengen an Standard-Rollenketten mit Winkellaschen, mit Mitnehmerlaschen sowie Rollenketten mit verlängerten Bolzen. Alle Rapid Service Artikel sind auch in MEGAlife wartungsfreier Ausführung verfügbar.


HIGHLIGHTS

- Schnellste Lieferzeit
- Höchste Flexibilität für unser Rapid Service-Lieferprogramm
- Kettentypen: Förderketten mit Standard-Winkellaschen und -Mitnehmerlaschen sowie Förderketten mit verlängerten Bolzen
- Lieferumfang: Kettengrößen 08B-1 bis 16B-1
- Auch in **MEGAlife wartungsfreier** Ausführung lieferbar
- Alle Anbauteile in vernickelter Ausführung
- Lieferzeit für Standardausführungen: **Kurzfristig nach Anforderung**

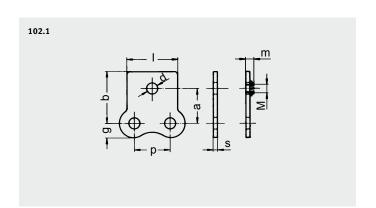
EXKLUSIV

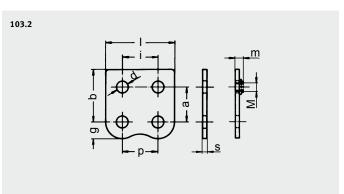
Förderketten mit kundenindividuellen Sonder-Anbauteilen können ab sofort auch in kleinen Mengen schnell und kurzfristig gefertigt werden. Und das in gewohnt hoher JWIS-Qualität!

Das gibt es nur bei iwis.

Rapid Service für Förderketten

TWIS Förderketten mit Mitnehmerlaschen

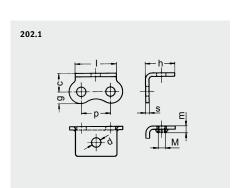

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

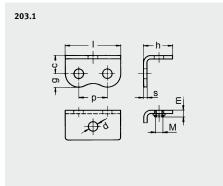

05/WQ	hnis Stand	MEGAIII.	8 m / 102) q	/	ilung	6. (4.11)		Eine Che	(mm) step Swellach	Orestern Orestech	s (mm) retten 8 (mm)	i (mm)	(шш),	Slmm	a. Mulm	Gewinde einsatz
Form 10	2.1															
08 B-1	L 85 SL	L 85 ML	1/2	12,7	13,0	19,0	4,2	11,6	25,5	39,4	5,4	-	18,0	1,5	4	5,2
10 B-1	M 106 SL	M 106 ML	5/8	15,875	16,3	24,3	5,2	13,6	30,1	46,6	6,8	-	24,0	1,6	5	5,3
12 B-1	M 127 SL	M 127 ML	3/4	19,05	19,1	29,1	6,2	15,9	35,3	54,7	7,4	-	28,0	1,8	5	5,5
16 B-1	M 1611	M 1611 ML	1	25,4	24,6	36,6	8,2	25,9	57,8	89,7	10,4	-	36,2	3,0	6	8,2
Form 10	3.2															
08 B-1	L 85 SL	L 85 ML	1/2	12,7	17,0	23,0	4,2	11,6	25,5	39,4	5,4	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL	M 106 ML	5/8	15,875	16,3	25,8	5,2	13,6	30,1	46,6	7,5	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL	M 127 ML	3/4	19,05	18,3	29,0	6,2	15,9	35,3	54,7	9,0	19,0	37,2	1,8	5	5,5
16 B-1	M 1611	M 1611 ML	1	25,4	28,45	41,55	8,2	25,9	57,8	89,7	10,35	25,4	47,2	3,0	6	8,2

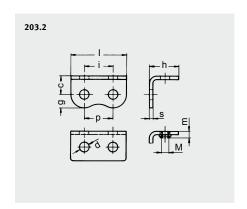
 $\label{thm:condition} \mbox{Der Zusatz SL (super longlife) kennzeichnet Ketten \ mit \ besonders \ verschleiß festen \ Bolzen.}$

www.iwis.de/**MEGAlife**

TVVIS Förderketten mit Winkellaschen


aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

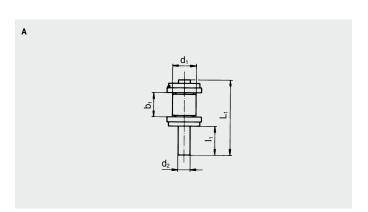

Simo	iwis Star	**************************************	Sun.	/ /	eilung		(hi.)	/ k	nfach- etten	/ I	veifach- ketten	/ k	reifach- tetten	(m. / 1. / 1. / 1. / 1. / 1. / 1. / 1. /	(m. / (m.)	(m)	Smiles	(u W	Gev eir
Form 2	02.1																		
08 B-1	L 85 SL	L 85 ML	1/2	12,7	8,0	4,2	27,6	39,6	41,5	53,5	55,4	67,4	5,4	14,0	-	18,1	1,5	4	5,2
10 B-1	M 106 SL	M 106 ML	5/8	15,875	9,0	5,2	33,6	49,6	50,1	66,1	66,6	82,6	6,8	18,0	-	24,0	1,6	5	5,3
12 B-1	M 127 SL	M 127 ML	3/4	19,05	10,0	6,2	41,1	61,1	60,5	80,5	79,9	99,9	7,4	22,6	_	28,0	1,8	5	5,5
16 B-1	M 1611	M 1611 ML	1	25,4	16,0	8,2	53,9	77,9	85,8	109,8	117,7	141,7	10,4	26,0	-	36,2	3,0	6	8,2
Form 2	03.1																		
08 B-1	L 85 SL	L 85 ML	1/2	12,7	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL	M 106 ML	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0	1,6	5	5,3
12 B-1	M 127 SL	M 127 ML	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611	M 1611 ML	1	25,4	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2
Form 2	ດລວ																		
08 B-1	L 85 SL	L 85 ML	1/2	12,7	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 SL	M 106 ML	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0		5	5,3
					,			,			,			ĺ			1,6		
12 B-1	M 127 SL	M 127 ML	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611	M 1611 ML	1	25,4	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2

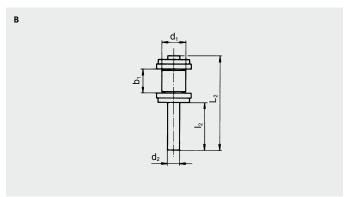

Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen.

Alle Typen auch als wartungsfreie MEGAlife-Ausführung erhältlich.

www.iwis.de/MEGAlife

TWIS Förderketten mit verlängerten Bolzen


aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)


S, MO	iwis Stanz	Mecallis Pustinis	So (No)	Teilung	Breike ing of a state	Rollendurch,	80/en/duch.	, (mm)	Ausführun		Ausfüh	rung B
Bolzen	form A, B											
08 B-1	L 85 SL	L 85 ML	1/2	12,7	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
10 B-1	M 106 SL	M 106 ML	5/8	15,875	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
12 B-1	M 127 SL	M 127 ML	3/4	19,05	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
16 B-1	M 1611	M 1611 ML	1	25,4	17,02	15,88	8,28	53,5	20,0	68,5	35,0	18,0

Alle abgebildeten Kettentypen können auch alternativ mit Duplex- und Triplexbolzen gefertigt werden. Lieferzeit bitte abstimmen. Der Zusatz SL (super longlife) kennzeichnet Ketten mit besonders verschleißfesten Bolzen.

www.iwis.de/MEGAlife

Die wartungsfreien iwis-Ketten für neue Anwendungen in der Fördertechnik

AUSGANGSLAGE

MEGAlife wartungsfreie Rollen- und Förderketten können überall dort eingesetzt werden, wo eine Nachschmierung nicht oder nur bedingt möglich ist.

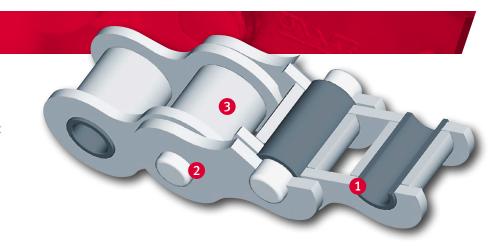
UNSERE LÖSUNG

MEGAlife wartungsfreie Rollen- und Förderketten bieten eine deutlich längere Lebensdauer als herkömmliche wartungsarme/-freie Rollenketten.

Das bedeutet für Sie:

- ---> Weniger Stillstandzeiten
- Längere Austauschintervalle in den Anlagen und Maschinen
- --- Deutlich reduzierte Wartungskosten

HIGHLIGHTS MEGALIFE I


- Hervorragend geeignet für normale Kettenanwendungen ohne Nachschmierung bei Geschwindigkeiten bis max. 3 m/s
- Unter bestimmten Bedingungen dauerhaft wartungsfrei
- Sehr leicht zerlegbar easy break
- Auch in korrosiven Umgebungen einsetzbar; empfehlenswert mit Schmierung, wenn möglich
- 100 % Kompatibilität mit iwis-Standard-Förderketten durch Verwendung von gleichen original iwis-Anbauteilen
- MEGAlife I Rollenketten mit verlängerten Bolzen sind chemisch vernickelt
- Alle Rollenketten mit abgesetzten Bolzen
- Auch als Transferkette, Stauförderkette oder Gripkette verfügbar

HIGHLIGHTS MEGALIFE II

- Die Lösung bei schnell laufenden Kettentrieben, v > 3 m/s und/oder hohen Belastungen
- Deutlich verbesserte Verschleißbeständigkeit durch ein spezielles thermochemisches Verfahren der Bolzen, die zu einer sehr hohen Oberflächenhärte und optimalen Haftfestigkeit führt
- Deutlich längere Lebensdauer
- Bolzen und Sinterhülsen sind optimal aufeinander abgestimmt
- Nicht geeignet in Umgebungen, wo Korrosion auftreten kann
- Haupteinsatz der ML II ist als Antriebskette
- Für anspruchsvolle Anwendungen

MEHR QUALITÄT

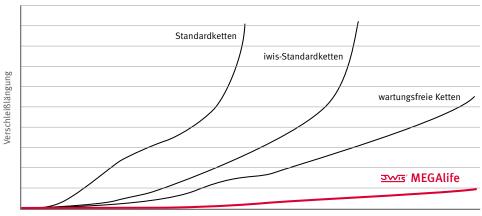
- Nahtlose Sinterhülse aus speziell für diese Anwendung entwickelten Werkstoff, gehärtet und für optimale tribologische Eigenschaften behandelt
- 2 Bolzen mit verschleißfester und reibungsoptimierter Oberflächenbeschichtung
- 3 Nahtlose Rolle mit korrosionsgeschützter Oberfläche und auf die Sinterhülse optimierte Geometrie

MEGAlife steht für eine extrem hohe Dauerund Bruchfestigkeit. Zahlreiche Anwendungen bestätigen das.

WEITERE KUNDENNUTZEN

Extrem hohe Dauer- und Bruchfestigkeit

- Optimiertes Verschleißverhalten auch bei hohen Geschwindigkeiten und dort, wo sich selbst herkömmliche wartungsfreie Ketten längen
- Hochwertiger Korrosionsschutz durch vernickelte Einzelteile
- Temperaturbereich von -40 °C bis +150 °C
- Standard- und Förderketten können problemlos auf MEGAlife umgestellt werden: Dank des modularen Aufbaus der Ketten ist Kompatibilität in den Anlagen gegeben
 - keine zusätzlichen Anpassungen sind notwendig!
- MEGAlife-Ketten sind sauber, trocken und umweltfreundlich durch Entfall der Schmierung


ANWENDUNGSBRANCHEN

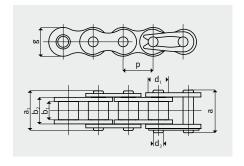
- Verpackungs- und Lebensmittelindustrie
- Druckindustrie
- Fördertechnik, Förderanlagen
- Textilmaschinen und Bekleidungsindustrie
- Papierverarbeitung und Buchbindereien
- Elektronikindustrie und Leiterplattenfertigung
- Holz-, Glas- und Keramikverarbeitung
- Medizintechnik
- Lampenherstellung
- ... und überall dort, wo eine Nachschmierung nur bedingt oder nicht möglich ist.

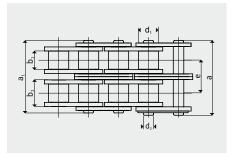
PRODUKTPROGRAMM

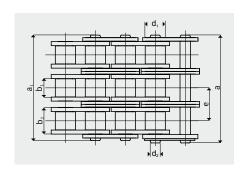
- Rollenketten nach ISO 606 (DIN 8187 und DIN 8188)
- Rollenketten mit diversen Anbauteilen
- Rollenketten mit geraden Laschen
- Stauförderketten
- Transferketten
- Gripketten
- Sonderketten
- ... fast das gesamte JWIS-Kettenprogramm kann in wartungsfreier ML-Ausführung gefertigt werden. Sprechen Sie uns an!

MEHR EFFIZIENZ

Betriebsstunden



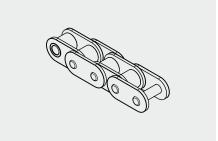

TWIS MEGAlife I Rollenketten


aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188)

	/	80	/	/ /	/	/	/ ,	/ ,	/	Innenglie	/	′ _	englied	/ ,	/ ,	/ /
05)	Imis Beeich.	um.	Pollung.	Bruchkak	Bruchkart Chuist	Selenkriz	Gewicht,	6 (m) on	min.	S(M _{IR)}	How a.	o (m)	Rolle of	80/2en	Querelling	8 estell Mr. (5 m) Mr.
Einfach	1															
06 B-1	G 67 ML*	3/8	9,525	11.000	8.900	0,28	0,41	5,72	8,53	8,20	12,90	14,10	6,35	3,31	-	50033917
08 B-1	L 85 ML	1/2	12,70	22.000	17.800	0,50	0,70	7,75	11,30	11,80	16,90	18,50	8,51	4,45	-	50026256
08 A-1 ANSI 40	L 85 AML	1/2	12,70	17.500	13.900	0,44	0,60	7,94	11,15	12,00	16,60	17,50	7,95	3,96	-	50036841
10 B-1	M 106 ML	5/8	15,875	25.000	22.200	0,67	0,95	9,65	13,28	14,40	19,50	20,90	10,16	5,08	-	50026257
12 B-1	M 127 ML	3/4	19,05	30.000	28.900	0,89	1,25	11,75	15,62	16,20	22,70	23,60	12,07	5,72	-	50026258
12 A-1 ANSI 60	M 128 AML	3/4	19,05	41.000	31.300	1,06	1,47	12,70	17,75	18,00	25,30	26,70	11,91	5,96	-	50038464
16 B-1	M 1611 ML	1	25,4	75.000	60.000	2,10	2,70	17,02	25,45	21,10	36,10	36,90	15,88	8,28	-	50028923
20 B-1	M 2012 ML	1 1/4	31,75	120.000	95.000	2,92	3,72	19,56	29,1	26,2	41,6	43,3	19,05	10,17	-	50037775
Zweifa	ch															
06 B-2	D 67 ML	3/8	9,525	19.000	16.900	0,56	0,78	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24	50033832
08 B-2	D 85 ML	1/2	12,70	40.000	31.100	1,00	1,35	7,75	11,30	11,80	30,80	32,40	8,51	4,45	13,92	50027439
10 B-2	D 106 ML	5/8	15,875	50.000	44.500	1,34	1,85	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59	50027509
12 B-2	D 127 ML	3/4	19,05	60.000	57.800	1,78	2,50	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46	50027457
16 B-2	D 1611 ML	1	25,40	150.000	106.000	4,21	5,40	17,02	29,45	21,10	68,00	68,80	15,85	8,28	31,88	50033161
20 B-2	D 2012 ML	1 1/4	31,75	210.000	170.000	5,84	7,36	19,56	29,01	25,40	79,70	82,90	19,05	10,19	36,45	50033771
Dreifac	h															
08 B-3	TR 85 ML	1/2	12,70	58.000	44.500	1,50	2,00	7,75	11,30	11,80	44,70	46,30	8,51	4,45	13,92	50027510
10 B-3	TR 106 ML	5/8	15,875	75.000	66.700	2,02	2,80	9,65	13,28	14,40	52,50	54,00	10,16	5,08	16,59	50027511
12 B-3	TR 127 ML	3/4	19,05	89.000	86.700	2,68	3,80	11,75	15,62	16,40	61,50	62,50	12,07	5,72	19,46	50027512
16 B-3	TR 1611 ML	1	25,40	219.000	160.000	6,32	8,00	17,02	25,45	21,10	99,20	100,70	15,88	8,28	31,88	50033628

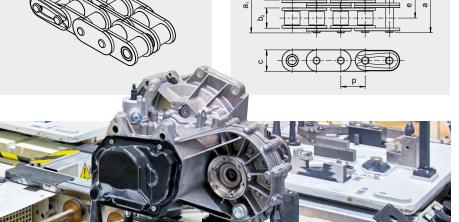
^{*} Auch in 10 m lieferbar (Art. 50035181). Gerade Laschenform ¹⁾ bei gekröpften Gliedern abweichende Maße Beim Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann.

<u> স্থার</u> MEGAlife I Rollenketten mit geraden Laschen

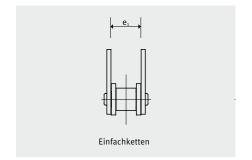

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188)

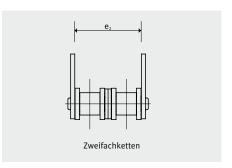

0\$/	Imiss Beselfs.	Pellin,	180 (2011) Teilun	Bruchkaff	Bruchkaff	Selenker:	Gewich.	(MS/m) Om	· .	Innenglie	/	· > ,	englied	BO(201)	Querellii	8 estell.Nr.
Einfach	n/Zweifach – M	IEGAlife	Rollenke	tten mit g	geraden L	aschen										
08B-1	L 85 ML-GL	1/2	12,7	-	17.800	0,5	0,7	7,75	11,3	12,2	16,9	18,5	8,51	4,45	-	50049011
08B-2	D 85 ML-GL	1/2	12,7	-	31.100	1	1,35	7,75	11,3	12,2	30,8	32,4	8,51	4,45	13,92	50046481
10 B-1	M 106 ML-GL	5/8	15,875	24.000	22.200	0,67	0,95	9,65	13,28	13,90	19,50	20,90	10,16	5,08	-	50035304
10 B-2	D 106 ML-GL	5/8	15,875	47.500	44.500	1,34	1,85	9,65	13,28	13,90	36,00	37,50	10,16	5,08	16,59	50034083
12 B-1	M 127 ML-GL	3/4	19,05	30.000	28.900	0,89	1,30	11,75	15,62	16,10	22,70	23,60	12,07	5,72	_	50037351
12 B-2	D 127 ML-GL	3/4	19,05	63.000	57.800	1,78	2,50	11,75	15,62	16,10	42,10	43,00	12,07	5,72	19,46	50034084
16B-1	M 1611 ML-G	1	25,4	77.000	60.000	2,1	2,7	17,02	25,45	20,65	36,1	36,9	15,88	8,28	_	50048583
16B-2	D 1611 ML-GL	1	25,4	151.000	106.000	4,21	5,4	17,02	25,45	20,65	68	68,8	15,88	8,28	31,88	50048584

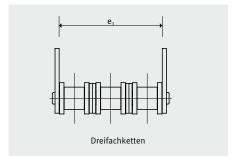
¹⁾ bei gekröpften Gliedern abweichende Maße – Beim Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann.


HIGHLIGHTS

- Optimale Lösung für Förderanlagen und Transportsystemen
- Deutlich höhere Steifigkeit und geringere Längung über die gesamte Lebensdauer im Vergleich zu Wettbewerbsprodukten
- Sehr hohe Verfügbarkeit der Förderanlagen, bisher benötigte Wartungsintervalle können entfallen
- Garantierte Langlebigkeit und Sauberkeit von Anlagen in der Automobilindustrie, Logistik und anderen wartungsfreien Bereichen

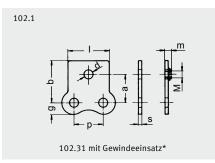


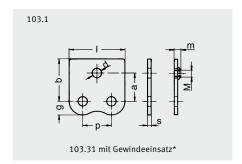

TWIS MEGAlife I Förderketten mit Mitnehmerlaschen

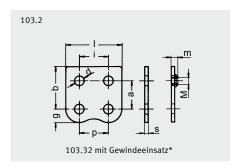

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

05/	^{IW} is Beselch _{III} .	su. Sulling	18 (2011) 2) [EILING	8 (mm) 3			Finfankes	weight of the party of the part	Dreifachker	8 (mm)	'lmm'	(mm)	S Similar S		Gewinde- einsatz
Form 1	02.1														
08 B-1	L 85 ML 1)	1/2	12,70	13,0	19,0	4,2	11,6	25,5	39,4	5,4	-	18,0	1,5	4	5,2
10 B-1	M 106 ML 1)	5/8	15,875	16,3	24,3	5,2	13,6	30,1	46,6	6,8	-	24,0	1,6	5	5,3
12 B-1	M 127 ML ¹⁾	3/4	19,05	19,1	29,1	6,2	15,9	35,3	54,7	7,4	-	28,0	1,8	5	5,5
16 B-1	M 1611 ML	1	25,40	24,6	36,6	8,2	25,9	57,8	89,7	10,4	-	36,2	3,0	6	8,2
Form 1	03.1 und 103.2														
08 B-1	L 85 ML 1)	1/2	12,70	17,0	23,0	4,2	11,6	25,5	39,4	5,4	12,7	23,6	1,5	4	5,2
10 B-1	M 106 ML 1)	5/8	15,875	16,3	25,8	5,2	13,6	30,1	46,6	7,5	15,8	31,0	1,6	5	5,3
12 B-1	M 127 ML 1)	3/4	19,05	18,3	29,0	6,2	15,9	35,3	54,7	9,0	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 ML	1	25,40	28,45	41,55	8,2	25,9	57,8	89,7	10,35	25,4	47,2	3,0	6	8,2

 $^{^{1)}}$ auch für die entsprechenden Zweifach- und Dreifachketten $^{-2)}$ Nennteilung



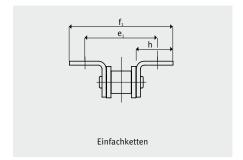


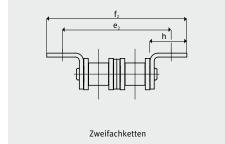


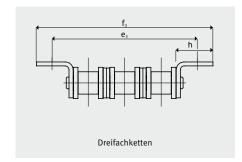
MITNEHMERLASCHEN

Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich. Bestückung mit Mitnehmerlaschen einund beidseitig an jedem Außenglied oder in größeren Abständen möglich. Weitere Förderketten und Gewindeeinsätze auf Anfrage.

^{*} Auf Anfrage

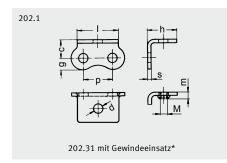


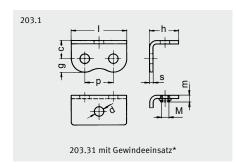

TWIS MEGAlife I Förderketten mit Winkellaschen

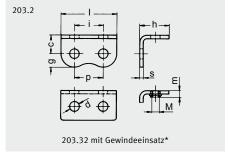

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

050	in is so cocin un	So / Soliton	118 (2011) 3) Tellun	SP (MM) 3.	(d) (d)	(411)	k (William)	nfach- etten	(aug)	eifach- etten	/ k	eifach- etten	(m) 4 (m)	(6)	(m. (*4.69)	S S S S S S S S S S S S S S S S S S S	W.F.	Gewind einsat
Form 2	02.1																	
08 B-1	L 85 ML 1)	1/2	12,70	8,0	4,2	27,6	39,6	41,5	53,5	55,4	67,4	5,4	14,0	-	18,1	1,5	4	5,2
10 B-1	M 106 ML 1)	5/8	15,875	9,0	5,2	33,6	49,6	50,1	66,1	66,6	82,6	6,8	18,0	-	24,0	1,6	5	5,3
12 B-1	M 127 ML 1)	3/4	19,05	10,0	6,2	41,1	61,1	60,5	80,5	79,9	99,9	7,4	22,6	_	28,0	1,8	5	5,5
16 B-1	M 1611 ML	1	25,40	16,0	8,2	53,9	77,9	85,8	109,8	117,7	141,7	10,4	26,0	-	36,2	3,0	6	8,2
Form 2	03.1 und 203.2																	
08 B-1	L 85 ML 1) 2)	1/2	12,70	9,5	4,2	32,6	44,6	46,5	58,5	60,4	72,4	5,4	16,5	12,7	23,6	1,5	4	5,2
10 B-1	M 106 ML 1) 2)	5/8	15,875	11,0	5,2	30,6	49,6	47,1	66,1	63,6	82,6	7,5	18,0	15,8	31,0	1,6	5	5,3
12 B-1	M 127 ML 1) 2)	3/4	19,05	12,0	6,2	35,5	56,9	54,9	76,3	74,3	95,7	9,0	20,5	19,0	37,2	1,8	5	5,5
16 B-1	M 1611 ML	1	25,40	18,0	8,2	57,7	83,9	89,6	115,8	121,5	147,8	10,4	29,0	25,4	47,2	3,0	6	8,2

Förderkette D 1611 ML und TR 1611 ML auf Anfrage 1) auch für die entsprechenden Zweifach- und Dreifachketten 2) Montage der Winkellaschen auch über die Kette nach innen möglich, außer bei beidseitiger Montage an D 85, D 106 und D 127 3) Nennteilung





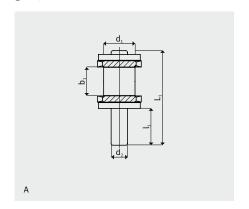


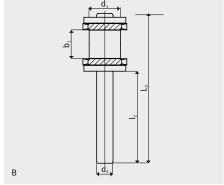
WINKELLASCHEN

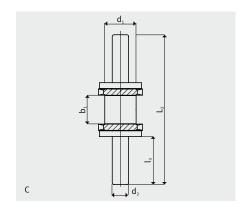
Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich. Montage der Winkellaschen mit Gewindeeinsatz über die Kette nach innen nicht möglich. Bestückung mit Winkellaschen ein- und beidseitig an jedem Außenglied oder in größeren Abständen möglich. Weitere Förderketten und Gewindeeinsätze auf Anfrage.

* Auf Anfrage

<u> স্থার</u> MEGAlife I Förderketten mit verlängerten Bolzen

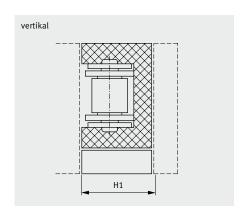

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

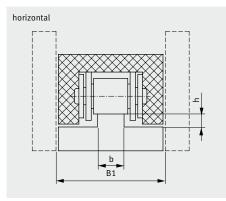

- S	im; Beelin	(180) (180)	Teilung	Breite in State of Company of Com	Rollendurch,	80/2 mmc3/26+	, messer (mm) ;	Ausführur	ng A	Ausführun	
Bolzenfor	n A, B, C										
08 B-1	L 85 ML ¹⁾	1/2	12,7	7,75	8,51	4,45	25,5	10,0	40,5	25,0	13,0
10 B-1	M 106 ML ¹⁾	5/8	15,875	9,65	10,16	5,08	30,0	12,0	48,0	30,0	15,5
12 B-1	M 127 ML ¹⁾	3/4	19,05	11,75	12,07	5,72	36,0	15,0	51,0	30,0	15,5
16 B-1	M 1611 ML	1	25,4	17,02	15,88	8,28	53,8	20,0	68,5	35,0	18,0


 $^{^{1)}}$ für Mehrfachketten auf Anfrage $^{-2)}$ Nennteilung $^{-2)}$ Andere Bolzenlängen und Formen auf Anfrage

VERLÄNGERTE BOLZEN

Die abgebildeten Typen sind auch als Steck- und Außenglieder für Endmontage und Reparatur erhältlich (C nur als Außenglied).

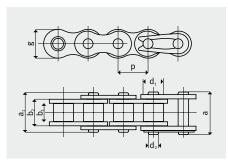


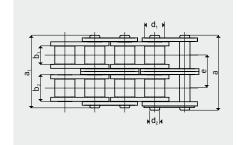


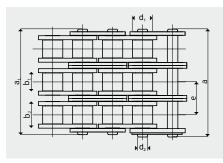
MEGAlife I Transferketten

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187)

iwis Beech,	8000	/ / 9	/ / 4	/ _{\tilde{	Bestell.W.
L 85 TF ML-1	20	7,5	3,1	15,4	50027317
M 106 TF ML-1	25	9,5	3,1	17,7	50036409
M 127 TF ML-1	30	11,3	2,9	20,0	50032663

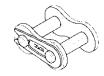

೨₩፲ਫ਼[®] MEGAlife II – Rollenketten

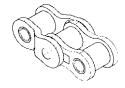

aufbauend auf iwis-Rollenketten nach ISO 606 (DIN 8187 und DIN 8188)


05/	imis _{Se} Seigh.	rums Peilun	8 / (2011) Peillun	Bruchkaft	Bruchkaff	min. E. E. Golenkei: E. E. E	Gewich?	(Kg/m) om	/	Innenglie 'A'	/	_	englied ***	1 (mm) max. 80/2en 9 /2en	5 m	Varianten Wholes
Einfach	1															
06 B-1	G 67 ML-2*	3/8	9,525	11.000	8.900	0,28	0,41	5,72	8,53	8,20	12,90	14,10	6,35	3,31	_	50030791
08 B-1	L 85 ML-2	1/2	12,70	22.000	17.800	0,50	0,70	7,75	11,30	12,20	16,90	18,50	8,51	4,45	-	50030461
10 B-1	M 106 ML-2	5/8	15,875	25.000	22.200	0,67	0,95	9,65	13,28	14,40	19,50	20,90	10,16	5,08	-	50030462
12 B-1	M 127 ML-2	3/4	19,05	30.000	28.900	0,89	1,25	11,75	15,62	16,40	22,70	23,60	12,07	5,72	-	50030463
16 B-1	M 1611 ML-2	1	25,40	75.000	60.000	2,10	2,72	17,02	25,45	21,10	36,10	36,90	15,88	8,28	_	50030464
20 B-1	M 2012 ML-2	1 1/4	31,75	120.000	95.000	5,84	3,72	19,56	29,10	26,60	77,00	79,70	19,05	10,17	36,45	50033036
Zweifa	ch															
06 B-2	D 67 ML-2	3/8	9,525	19.000	16.900	0,56	0,78	5,72	8,53	8,20	23,40	24,60	6,35	3,31	10,24	50031074
08 B-2	D 85 ML-2	1/2	12,70	40.000	31.100	1,00	1,35	7,75	11,30	12,20	30,80	32,40	8,51	4,45	13,92	50030465
10 B-2	D 106 ML-2	5/8	15,875	49.000	44.500	1,34	1,85	9,65	13,28	14,40	36,00	37,50	10,16	5,08	16,59	50030466
12 B-2	D 127 ML-2	3/4	19,05	61.000	57.800	1,78	2,50	11,75	15,62	16,40	42,10	43,00	12,07	5,72	19,46	50030467
Droifac	h-Ketten in Ml	II Auctii	hrung, a	uf Anfrag	ro.											
Diellac	ii-ketteii iii Mi	. II Ausiu	illulig. a	iui Aiiiiag	,											
Einfach	ı-Ketten nach [DIN ISO 6	606 (DIN	8188), a	merikanis	che Bau	art									
08 A-1 ANSI 40	L 85 AML-2	1/2	12,70	17.500	13.900	0,44	0,60	7,94	11,15	12,00	16,60	17,50	7,95	3,96	_	50033770
12 A-1 ANSI 60	M 128 AML-2	3/4	19,05	41.000	31.300	1,06	1,47	12,70	17,75	18,00	25,30	26,70	11,91	5,96	-	50031073
16 A-1 ANSI 80	M 1610 AML-2	1	25,40	68.000	55.600	1,79	2,57	15,88	22,40	22,80	32,00	33,90	15,88	7,94	_	50032667

Förderketten in ML II Ausführung auf Anfrage

¹⁾ Bei gekröpften Gliedern bestehen abweichende Maße. Bei Einbau von gekröpften Gliedern ist zu beachten, dass sich die Kettenbruchkraft um ca. 20 % vermindern kann. * gerade Laschenform



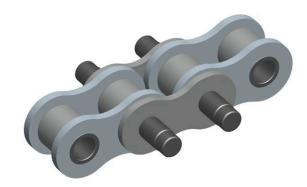

EINZELTEILE UND VERBINDUNGSGLIEDER

Normbezeichnung B Innenglied

Normbezeichnung E Steckglied mit Federverschluss

Normbezeichnung C Gekröpftes Doppelglied

Normbezeichnung A Außenglied


MEGAlife Förderketten

Beispiele einiger Sonderausführungen

MEGAlife-Förderkette mit Mitnehmerlaschen

MEGAlife-Förderketten mit verlängerten Bolzen

MEGAlife-Förderkette mit Winkellaschen

MEGAlife-Förderkette mit Sonderlasche

TYVIS MEGAlife wartungsfreie Stauförderketten

Mehr Effizienz und Nachhaltigkeit

PROBLEM/AUSGANGSLAGE

- Nachschmierung nicht oder nur bedingt möglich
- Reine und trockene Umgebungsbedingungen
- Erschwerter Zugang für Wartungsarbeiten
- Verschmutzung der Anlage und des Fördergutes durch Kettenschmierstoff.

UNSERE LÖSUNG

iwis-Stauförderketten mit vernickelten Laschen und Bolzen, mit Leichtlaufrollen aus Sintermetall sowie einer speziellen Gelenkausführung – eine technische Innovation. Die ersten echten wartungsfreien Stauförderketten mit Leichtlaufrollen am Markt.

Bauformen:

- VR: mit versetzten Stauförderrollen
- OS: Standard-Ausführung ohne Scheiben
- M: Standard-Ausführung mit Scheiben

HIGHLIGHTS

- Spezielle Gelenkausführung mit Hülsen aus Sintermetall
- Vernickelte Laschen und Bolzen mit umweltfreundlicher, schmiermittelfreier Oberfläche sorgen für reduzierte Wartungskosten und weniger Stillstandzeiten Ihrer Anlage.

WEITERE HIGHLIGHTS

- Hervorragendes Verschleißverhalten auch unter extremen Umgebungen
- Sehr leicht zerlegbar
- Umweltfreundlich, da Oberfläche schmiermittelfrei
- Für Reinraumbedingungen geeignet

TECHNISCHE MERKMALE

- Kettenoberfläche und Staurollen trocken
- Korrosionsgeschützt
- Staurollen wahlweise aus Kunststoff oder Stahl (V2A oder vernickelt)
- Temperaturbereich von -40 °C bis +150 °C (bei Staurollen aus Stahl)
- Stauförderketten lieferbar in neuer iwisoder klassischer Ausführung in den Größen 1/2" und 3/4"
- Tragrollen aus Sintermetall verringern den Reibwert. Dadurch reduziert sich die Antriebsleistung und die Belastung auf die Kette.

ANWENDUNGSBRANCHEN

- Elektronikindustrie und Leiterplattenfertigung
- Verpackungs- und Lebensmittelindustrie
- Förderanlagen
- Holz-, Glas- und Keramikverarbeitung
- Medizintechnik
- ... und überall dort, wo eine Nachschmierung nur bedingt oder nicht möglich ist.

Reibkraftvergleich

Kette mit iwis-Leichtlaufrollen

Kette mit klassischen Laufrollen

Lebensdauervergleich (Stauförderketten ohne Nachschmierung)

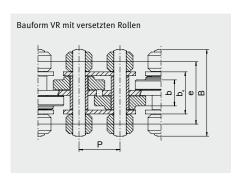
iwis MEGAlife wartungsfreie Stauförderketten

Standard Wettbewerb

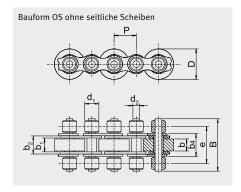
Reibwertvergleich

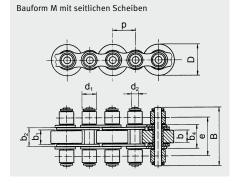
iwis MEGAlife-Ketten

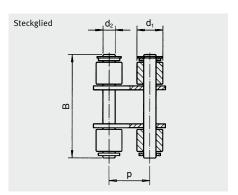
Standardketten Wettbewerb


MEGAlife

TYVIS MEGAlife wartungsfreie Stauförderketten


Produktprogramm





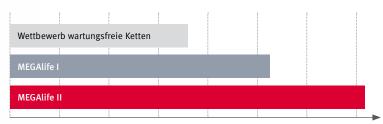
SFK – mit Förderrollen aus Kunststoff **SFS** – mit Förderrollen aus gehärtetem Stahl

Wisser Beechny	leiling.	Kettenh	e (mm)	, (m _{m)}	of (mm),	, max.	Breife b	(Willy)	Durch Förderesser	m) Me	Magrahigh.	Durchnesse	Durchmess	Sowicht (Rehm)
Bauform OS: S	Standard- <i>l</i>	Ausführun	g ohne So	heiben										
L 85 SFK-ML	12,7	27	18,7	7,75	11,3	14,5	7,5	16,0	17,0	18,0	6	8,52	4,45	1,2
L 85 SFS-ML	12,7	27	18,7	7,75	11,3	14,5	7,5	16,0	17,0	-	8	8,52	4,45	1,8
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
Bauform M: St	tandard-A	usführung	g mit seitli	chen Sch	eiben									
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFK-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFK-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1

 $[\]star$ Wahlweise auch mit **V2A**-Staurollen verfügbar

TVIS MEGAlife Rollen- und Förderketten

Zusammenfassung der Vorteile


MEHR WARTUNGSFREIHEIT

MEGAlife wartungsfreie Rollen- und Förderketten bieten eine deutlich längere Lebensdauer als herkömmliche wartungsarme/-freie Rollenketten.

Das bedeutet für Sie:

- --- Weniger Stillstandzeiten
- --- Längere Austauschintervalle in den Anlagen und Maschinen
- --> Deutlich reduzierte Wartungskosten

Lebensdauer

Standard- und Förderketten können problemlos auf MEGAlife umgestellt werden: Dank des modularen Aufbaus der Ketten ist Kompatibilität in den Anlagen gegeben - keine zusätzlichen Anpassungen sind notwendig!

MEHR NACHHALTIGKEIT

MEGAlife = schmiermittelfrei

MEGAlife wartungsfreie Rollen- und Förderketten sind sauber, trocken und umweltfreundlich.

Das bedeutet für Sie:

- --- Einsparungen bei der Nachschmierung von Ketten bis hin zum Entfall von Nachschmierungsvorrichtungen
- ---> Weniger Energie- und Investitionskosten
- --> Einsparungen von fossilen Ressourcen

iwis ist vom TÜV SÜD zertifiziert für den Bereich "Entwicklung, Herstellung und Vertrieb von Antriebs- und Förderketten" nach

CF-Edelstahlketten

Die neuen rostfreien CF-Edelstahlketten von iwis sind extrem zuverlässig, dauerfest und korrosionsbeständig und somit perfekt für den Einsatz u. a. im Lebensmittelbereich geeignet. Beste iwis-Qualität mit einem herausragenden Preis-Leistungs-Verhältnis.

ゴいで CF-Edelstahlketten

Extrem korrosionsbeständig und rostfrei!

BESTE QUALITÄT

Die neuen rostfreien CF-Ketten aus austenitischen Edelstahl sind extrem zuverlässig, dauerfest und korrosionsbeständig und somit perfekt für den Einsatz u. a. im Lebensmittelbereich geeignet. Beste iwis-Qualität mit einem herausragenden Preis-Leistungs-Verhältnis.

ANWENDUNGSGEBIETE

- In aggressiven Umgebungen
- In Umgebungen mit Wasser- oder Dampfapplikationen und strengen Reinigungsvorschriften
- In Umgebungen mit extremen Temperaturen

HIGHLIGHTS

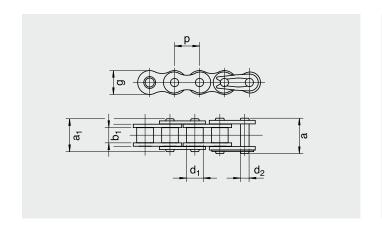
- Durch einen besseren Glattschnittanteil werden höhere Dauer und Zeitfestigkeiten erreicht und eine geringere Längung, was wiederrum zu einer verlängerten Einsatzdauer und Stabilität führt.
- Alle Rollen sind nahtlos und somit äußerst stoßresistent bei höherer Geschwindigkeit. Ein ruhiger Lauf ist gewährleistet.
- Die nahtlosen Hülsen reduzieren die Anfangsverschleißlängung und gewährleisten eine wesentliche höhere Genauigkeit bei der Positionierung als herkömmliche rostfreie Rollenketten im Betrieb. Ein wesentlicher Vorteil für den Einsatz in der Abfüll- und Fördertechnik sowie im Verpackungsbereich.
- korrosionsbeständige Kette mit einer höheren Bruchkraft und einer höheren Dauerfestigkeit als CF-Edelstahlketten, so empfehlen wir Ihnen die korrosionsbeständigen iwis CR-Ketten.

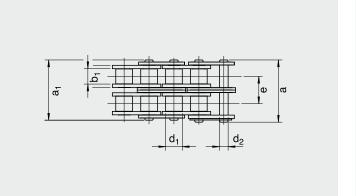
Mehr Informationen hierzu finden Sie im Kapitel CR-Ketten.

• Eingeschränkte Längentoleranzen für eine noch genauere Positionierung

- Temperaturbereich: -80 °C bis +150 °C
- Diverse **Sonderschmierungen** verfügbar u. a. Hochtemperatur- (bis max. 400 °C), Tieftemperatur- oder Lebensmittelschmierung mit H1-Zulassung
- Förderketten mit kundenspezifischen Anbauteilen können kurzfristig ausgelegt und realisiert werden.
- Last-Dehnungs-Diagramme können erstellt werden

Benötigt Ihre Anwendung eine

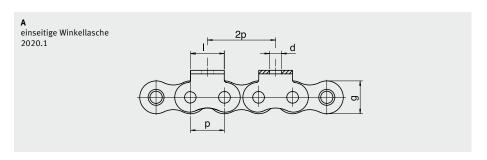

SALZSPRÜHNEBELTEST

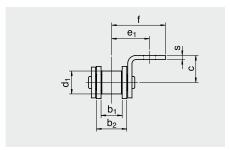

Im genormten Salzsprühnebeltest erreichen unsere CF-Edelstahlketten eine höhere Korrosionsbeständigkeit als andere marktübliche rostfreie Ketten.

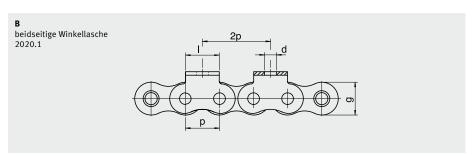
Marktübliche rostfreie Ketten WIS-Edelstahlketten

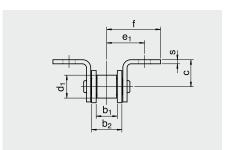
Kelleny	OM/SO	Jelling D.	Imese Beite	Rollen &	Boken B	Boleenlang	Nutstiffere	(mm) ⁴ (mm) ⁸ (mm) ⁸	Quertellung Chertellung	Buchkap Emin, ap	Bestem.
CF-Edelstahlk	etten										
G 67 CF*	06 B-1	9,525	5,72	6,35	3,28	13,5	16,8	8,2	-	6.400	40008144
D 67 CF*	06 B-2	9,525	5,72	6,35	3,28	23,8	27,1	8,2	10,24	11.000	40008147
L 85 CF	08 B-1	12,70	7,75	8,51	4,45	17,0	20,7	11,8	_	12.500	40008216
D 85 CF	08 B-2	12,70	7,75	8,51	4,45	31,0	34,9	11,8	13,92	22.000	40008149
M 106 CF	10 B-1	15,875	9,65	10,16	5,08	19,6	23,7	14,7	_	16.000	40008152
D 106 CF	10 B-2	15,875	9,65	10,16	5,08	36,2	40,3	14,7	16,59	29.000	40008153
M 127 CF	12 B-1	19,05	11,68	12,07	5,72	22,7	27,3	16,1	-	20.000	40008154
D 127 CF	12 B-2	19,05	11,68	12,07	5,72	42,2	46,8	16,1	19,46	35.000	40008156
M 1611 CF	16 B-1	25,40	17,02	15,88	8,28	36,1	41,5	21,0	_	40.000	40008157
D 1611 CF	16 B-2	25,40	17,02	15,88	8,28	67,0	73,4	21,0	31,88	85.000	40008158

^{*} mit geraden Laschen ** a = Verbindungsglied mit Feder CF = rostfrei

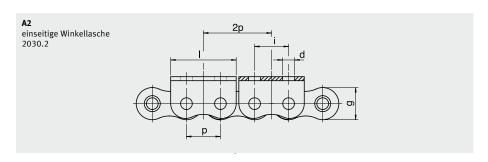

Edelstahlketten CF

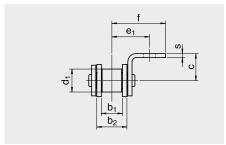


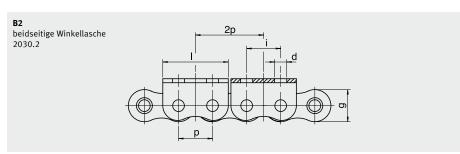

ত্র্পার CF-Edelstahlketten mit schmalen Winkellaschen

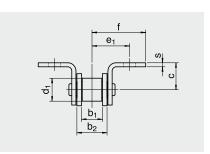

nach ISO 606 (DIN 8187)

Kettenty,	0,01,00	Innere Brei.	Rollen O	BOVEN BOVEN B	Bokenläng	Laschenhin	Querellung	Bruchkraft	Chin)	d (m _{m)}		Se Anbaute	/	s(m _{m)}
CF-Edelstah				/		/								
G 67 CF*	06 B-1	5,72	6,35	3,28	13,5	8,2	_	6.400	6,5	3,5	9,5	13,5	8,0	1,1
D 67 CF*	06 B-2	5,72	6,35	3,28	23,8	8,2	10,24	11.000	6,5	3,5	-	-	8,0	1,1
L 85 CF	08 B-1	7,75	8,51	4,45	17,0	11,8	_	12.500	10,0	4,5	13,1	19,0	12,5	1,5
D 85 CF	08 B-2	7,75	8,51	4,45	30,8	11,8	13,92	22.000	10,0	4,5	-	-	12,5	1,5
M 106 CF	10 B-1	9,65	10,16	5,08	19,6	14,7	-	16.000	10,0	5,5	16,7	27,0	15,0	1,7
D 106 CF	10 B-2	9,65	10,16	5,08	36,2	14,7	16,59	29.000	10,0	5,5	-	-	15,0	1,7
M 127 CF	12 B-1	11,68	12,07	5,72	22,7	16,1	_	20.000	11,0	6,6	18,6	29,0	18,5	1,8
D 127 CF	12 B-2	11,68	12,07	5,72	42,2	16,1	19,46	35.000	11,0	6,6	-	-	18,5	1,8
M 1611 CF	16 B-1	17,02	15,88	8,28	36,1	21,0	_	40.000	18,0	9,0	28,9	41,8	25,0	3,0
D 1611 CF	16 B-2	17,02	15,88	8,28	67,0	21,0	31,88	85.000	18,0	9,0	-	-	25,0	3,0

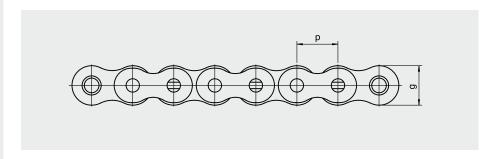


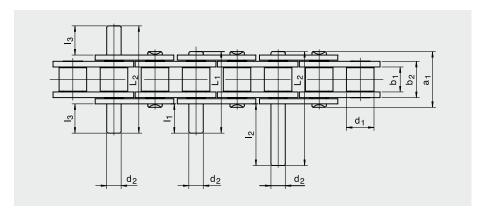

Edelstahlketten CF


TWIS CF-Edelstahlketten mit breiten Winkellaschen


nach ISO 606 (DIN 8187)

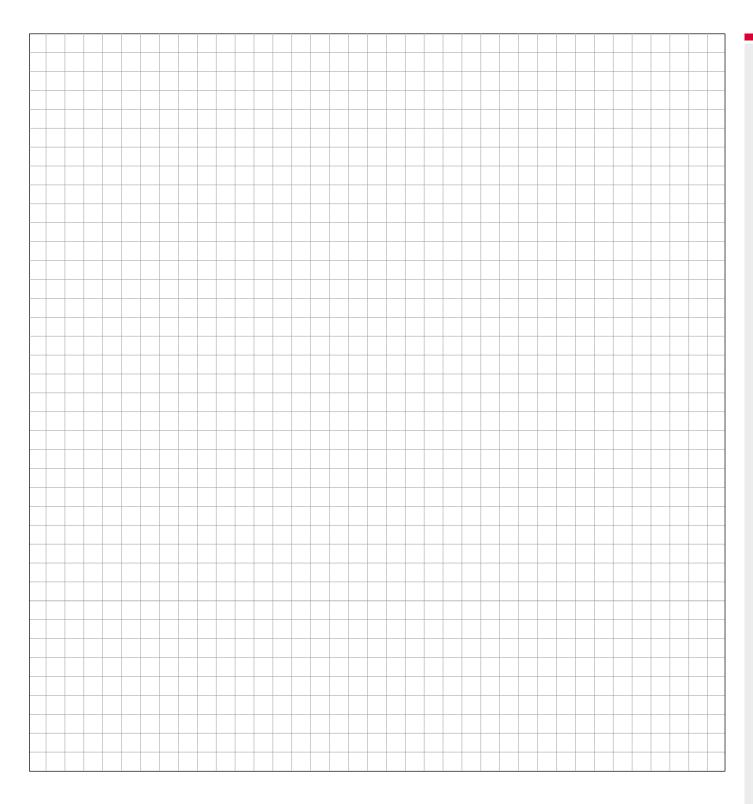
terenty.	OS/M/Q	Innere Breis	Pollen 8	80/2010 42,2010	Bokenling	Laschenhijt	Querellus	Bruchter	.m. M.	o (mm)	/	Maße Anb		(mm)	s(mm)
CF-Edelstah	lketten m	it breiten	Winkella	schen											
G 67 CF*	06 B-1	5,72	6,35	3,28	13,5	8,2	-	6.400	5,7	3,2	9,8	13,2	9,525	18,2	1,1
D 67 CF *	06 B-2	5,72	6,35	3,28	23,8	8,2	10,24	11.000	5,7	3,2	9,8	13,2	9,525	-	1,1
L 85 CF	08 B-1	7,75	8,51	4,45	17,0	11,8	-	12.500	10,0	4,5	13,1	19,0	12,7	23,2	1,5
D 85 CF	08 B-2	7,75	8,51	4,45	30,8	11,8	13,92	22.000	10,0	4,5	13,1	19,0	12,7	-	1,5
M 106 CF	10 B-1	9,65	10,16	5,08	19,6	14,7	-	16.000	10,0	5,5	16,7	27,0	15,9	28,5	1,7
D 106 CF	10 B-2	9,65	10,16	5,08	36,2	14,7	16,59	29.000	10,0	5,5	16,7	27,0	15,9	-	1,7
M 127 CF	12 B-1	11,68	12,07	5,72	22,7	16,1	-	20.000	11,0	6,6	18,6	29,0	19,1	34,8	1,8
D 127 CF	12 B-2	11,68	12,07	5,72	42,2	16,1	19,46	35.000	11,0	6,6	18,6	29,0	19,1	-	1,8
M 1611 CF	16 B-1	17,02	15,88	8,28	36,1	21,0	-	40.000	18,0	9,0	28,9	42,0	25,4	46,5	3,0
D 1611 CF	16 B-2	17,02	15,88	8,28	67,0	21,0	31,88	85.000	18,0	9,0	28,9	42,0	25,4	-	3,0




<u> তি</u> CF-Edelstahlketten mit verlängerten Bolzen

nach ISO 606 (DIN 8187)

W.	,0	Innere Breite 51 min Breite	(mm)	i (mm)	Bolzenlänge 41 mar 86	Fordermierländ	Fordernierisis	388 (6"		iberstand max	
Keitemy	00/1/10	Innere B	Rollen 9	80/26H	80/269	Fördemier	Förde,	in (mus) ;	(www) ⁵	J (ww) 5	Bruchkar Emin. M
CF-Edelstahlk	etten mit ver	längerten Bo	olzen								
G 67 CF *	06 B-1	5,72	6,35	3,28	13,5	23,2	33,5	10,9	21,2	11,2	6.400
L 85 CF	08 B-1	7,75	8,51	4,45	17,0	30,9	44,9	15,2	29,2	15,2	12.500
M 106 CF	10 B-1	9,65	10,16	5,08	19,6	36,2	52,8	17,9	34,5	17,9	16.000
M 127 CF	12 B-1	11,68	12,07	5,72	22,7	42,8	61,3	20,7	40,2	20,9	20.000
M 1611 CF	16 B-1	17,02	15,88	8,28	36,1	67,0	98,9	33,1	65,0	33,6	40.000


^{*} mit geraden Laschen CF = rostfrei Fehlende Maße siehe Standard CF-Ketten

Edelstahlketten CF

Notizen

Edelstahlketten

Edelstahl weiter gedacht! Für die schmiermittelfreien Hülsen der b.dry-Ketten wurde ein spezielles Hochleistungspolymer entwickelt, das eine enorm hohe Beständigkeit gegen aggressive Medien aufweist. Dank der Kombination von optimiertem Gelenk und rostfreiem CF-Edelstahl sind b.dry-Ketten deutlich beständiger und verschleißfester als vergleichbare Produkte. Und dazu absolut trocken.

b dry

DVVIS b.dry wartungsfreie Edelstahlketten

Extrem verschleißbeständig, rostfrei und absolut trocken!

BESTE QUALITÄT

b.dry-Rollenketten bestehen aus rost- und wartungsfreiem CF-Edelstahl mit einem optimierten Gelenk: Letzteres ist ein Highlight in Sachen Präzision.

Das Geheimnis der b.dry-Serie: "Stahl auf Stahl" ist Vergangenheit! Schmiermittelfreiheit ist ein Verdienst unserer b.dry-Hülsen, die aus einem speziellen Hochleistungspolymer bestehen.

Das Material ist bislang unbestreitbar einzigartig in seinen Fähigkeiten: b.dry-Produkte laufen komplett trocken und dabei trotzdem verschleißfester, korrosionsbeständiger, bruchfester und mit deutlich längerer Lebensdauer als vergleichbare Ketten.

Im trockenen Zustand zweimal besser, mit Initialschmierung, sogar vierfach. Es macht sich in jeder Hinsicht bezahlt.

HIGHLIGHTS

- Optimal aufeinander abgestimmte Einzelteileigenschaften verringern den Verschleiß der Ketten und erhöhen die Lebensdauer markant. b.dry-Ketten sind extrem zuverlässig, dynamisch hochbelastbar und korrosionsbeständig.
- b.dry-Ketten laufen komplett trocken, eine Schmierung ist nicht notwendig dank Hochleistungskunststoffgleitlager im Gelenk.
- Sehr hohe Medienbeständigkeit. Informationen zur chemischen Beständigkeit der b.dry-Kette und -Hülse auf Anfrage.
- Längentoleranzen nach ISO 606.

ANWENDUNGSGEBIETE

• In aggressiven Umgebungen

Pharmaindustrie Lackierstraßen

Lebensmittelindustrie

Reinraumanwendungen

• In Umgebungen mit Wasser- oder

Reinigungsvorschriften wie z.B.:

Dampfapplikationen und strengen

- Temperaturbereich: −100 °C bis +200 °C.
- Keine Nachschmierung erforderlich.
- Auch in Ausführungen als Rollenketten mit Anbauteilen oder verlängerten Bolzen sowie als kundenindividuelle Entwicklung möglich. ANSI-Ketten auf Anfrage.

- Hochleistungspolymer-Hülsen 1 sind FDA-konform, hochbelastbar und reibungseffizient. Kontakt mit Lebensmitteln oder hygienischen Artikeln ist unbedenklich.
- Edelstahlträgerhülsen: 2 dünnwandig, nahtlos und kugelkalibriert. b.dry-Ketten erreichen dadurch eine höhere Festigkeit sowie eine erheblich größere Verschleißbeständigkeit.
- CF-Grundkette ist aus austenitischem Edelstahl. 3

VERSCHLEISSLEBENSDAUER

Verschleißlebensdauer Kette trocken

iwis M 127CF b.dry

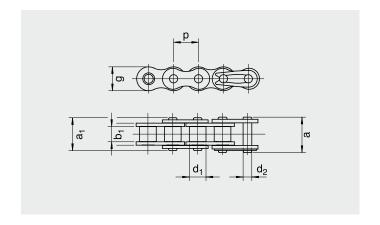
Verschleißlebensdauer Kette mit Initialschmierung (auf Wunsch)

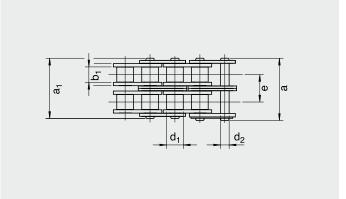
iwis D 127CF **b.dry**

Im trockenen Zustand LABS-frei

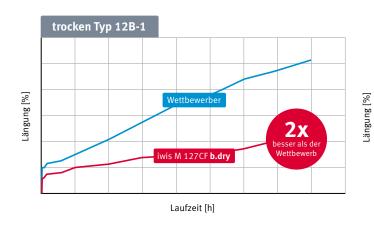
FLYER

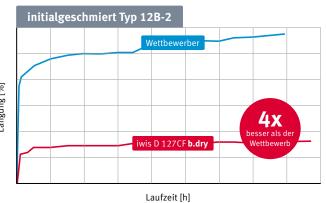
Mehr Informationen finden Sie in unserem Produktflyer.


Edelstahl weiter gedacht!



Keftenty	NIO SOMICO	Pelling De	(mm) Imere Breite b1 min, reite	φ ¹ (ωω) (σ) (σ) (σ) (σ) (σ) (σ) (σ) (σ) (σ) (σ	80/en 8	80/cm/a/8c	Nutsifféin	(mm): (aschenhohe	Chertelling © (mm)	Buchen min Mar	Bestelling
b.dry-Edelstah	ketten										
L 85 CF b.dry	08 B-1	12,70	7,75	8,51	4,45	17,0	20,7	11,8	_	12.500	40009443
D 85 CF b.dry	08 B-2	12,70	7,75	8,51	4,45	31,0	34,9	11,8	13,92	22.000	40009454
M 106 CF b.dry	10 B-1	15,875	9,65	10,16	5,08	19,6	23,7	14,7	-	16.000	40009451
D 106 CF b.dry	10 B-2	15,875	9,65	10,16	5,08	36,2	40,3	14,7	16,59	29.000	40009455
M 127 CF b.dry	12 B-1	19,05	11,68	12,07	5,72	22,7	27,3	16,1	-	20.000	40009452
D 127 CF b.dry	12 B-2	19,05	11,68	12,07	5,72	42,2	46,8	16,1	19,46	35.000	40009456
M 1611 CF b.dry	16 B-1	25,40	17,02	15,88	8,28	36,1	41,5	21,0	-	40.000	40009453


^{**} a = Verbindungsglied mit Feder CF = rostfrei Rollenketten mit Standardanbauteilen sowie kundenspezifische Ausführungen können realisiert werden. ANSI-Rollenketten auf Anfrage.



Verschleißverhalten der b.dry-Rollenkette mit und ohne Initialschmierung

Durch den Einsatz unserer für Lebensmittelkontakt zugelassenen Schmierung verbesserte sich die Leistung der Kette um ein Vielfaches.

Abbildungen nicht maßstabsgetreu.

Swis CR-Ketten

Korrosionsbeständige iwis-Ketten bestehen aus gehärteten, hochlegierten Stählen mit guter Korrosionsbeständigkeit und wesentlich höheren Dauer- und Bruchfestigkeiten als bei rostfreien Ketten. CR-Ketten können überall dort eingesetzt werden, wo Ketten trotz erschwerten Bedingungen durch Korrosion gelenkig bleiben müssen und aus hygienischen und optischen Gründen nicht rosten dürfen. Eine Schmierung der CR-Ketten wird empfohlen.

סעיוֹכּ CR-Ketten

Korrosionsbeständige Rollen- und Förderketten, Abmessungen nach ISO 606

PROBLEM/AUSGANGSLAGE

Ketten in korrosiven Medien müssen hohe Dauer- und Verschleißfestigkeiten aufweisen. Ketten aus normalen Stählen korrodieren schnell, während rostfreie Ketten aus V2-A-Stahl nur eingeschränkte Dauer- und Verschleißfestigkeitseigenschaften aufweisen. Vernickelte oder verzinkte Ketten bieten nur einen begrenzten Korrosionsschutz, da die Beschichtung durch Abrieb zerstört wird.

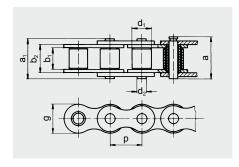
UNSERE LÖSUNG

iwis-Hochleistungsketten aus gehärteten hochlegierten Stählen mit guter Korrosionsbeständigkeit und wesentlich höheren Festigkeiten als bei rostfreien Ketten.

HIGHLIGHTS

- Hohe Verschleißfestigkeit bei regelmäßiger Nachschmierung
- Gute und dauerhafte Korrosionsbeständigkeit – im Vergleich zu oberflächenbeschichteten Ketten
- · Wesentlich höhere Dauerfestigkeitsund Bruchkraftwerte als Edelstahlketten → kleinere Dimensionierung möglich

TECHNISCHE MERKMALE


	iwis CR	iwis Standard	rostfreie Kette
Einzelteile	gehärtet	gehärtet	nicht gehärtet
Kette vorgereckt	ja	ja	nicht üblich
Dauerfestigkeit	80 %	100 %	50 %
Verschleißfestigkeit	95 %	100 %	30 %

KORROSIONSBESTÄNDIGKEIT

Alle CR-Ketten werden mit einer hochwirksamen Erstschmierung geliefert.

Korrosionsbeständigkeit ist nur gegeben bei hinreichender Nachschmierung.

05/	Iwis Beech	Hanoelsberech	g (mr.)	/	e außen		nmesser	Brachkase	SPANS	Sewiche (Cm2)
08 B-1	L 85 CR	1/2 x 5/16"	16,9	18,5	8,51	4,45	12,2	15.000	0,50	0,70
10 B-1	M 106 CR	5/8 x 3/8"	19,5	20,9	10,16	5,08	14,4	18.000	0,67	0,95
12 B-1	M 127 CR	3/4 x 7/16"	22,7	23,6	12,07	5,72	16,4	22.000	0,89	1,25

ANWENDUNGSBRANCHEN

- Nahrungs- und Genussmittelverarbeitung
- Getränkeherstellung
- Verpackungsmaschinen
- Käserei- und Molkereitechnik
- Bereiche mit feuchten oder aggressiven Bedingungen
- Reinigungsanlagen
- (Chemischer) Apparatebau
- ... und überall dort, wo Ketten trotz erschwerten Bedingungen durch Korrosion gelenkig bleiben müssen und aus hygienischen oder optischen Gründen nicht rosten dürfen.

ROST- UND SÄUREBESTÄNDIGKEIT

Abhängig von:

- Dauer
- Konzentration
- Temperatur
- Mischungsvarianten der einzelnen Medien

Zur Prüfung der Betriebstauglichkeit empfehlen wir Feldversuche.

KETTENRÄDER

Je nach Umfeld können Kettenräder aus

- rostfreiem Material
- geeigneten Kunststoffen
- · oder aus Stahl verwendet werden.

Korrosionseinflussgrößen

Technische Kurzdarstellung: Welches sind die Hauptfaktoren der Korrosion?

DIE HAUPTPARAMETER DER KORROSION

Man unterscheidet vier Hauptfaktoren, die die Korrosion beeinflussen:

- Das Medium, in der sich die Kette bewegt
- Verwendeter Kettenwerkstoff
- Konstruktion der Anlage
- Die Dauer und Art der Verwendung (kontinuierlich, zyklisch, saisonal)

KORROSIONSFAKTOREN

Alle CR-Ketten werden mit einer hochwirksamen Erstschmierung geliefert. Korrosionsbeständigkeit ist nur gegeben bei hinreichender Nachschmierung.

KONSTRUKTION

- Oberflächenzustand
- Nähe anderer Werkstoffe
- Zusammenbau (Schweißung und Nietungen)
- Mechanische Beanspruchung
- Gestalt
- Schutzmaßnahmen
- Kontakt mit dem Medium (partielle oder totale Tauchung)

WERKSTOFF

- Stahlerzeugung
- Legierungszusätze
- Metallurgischer Zustand (Wärmebehandlung und mechanische Bearbeitung)
- Unreinheiten
- Zusammensetzung

MEDIUM

- Bewegung des Mediums
- Chemische Beschaffenheit
- Viskosität
- Unreinheiten
- pH-Wert (Säuregrad)
- Temperatur
- Druck
- Konzentration
- Feststoffablagerungen

ZEITEINFLUSS

- Wartungsfrequenzen
- Nachschmierungsintervall
- Nachschmiermedium
- Alterungsverhalten der Struktur
- Spannungsentwicklung
- Veränderung der Passivschicht
- Temperaturwechsel

Alle Korrosionsfaktoren sind als gleichwertig zur Korrosionsbeständigkeit zu betrachten. Bitte wenden Sie sich für eine kompetente Beratung an unser Technisches Service Team.

Stauförderketten

Die neue Stauförderkettengeneration L88SF und M12OSF von iwis bietet eine optimierte Lastverteilung und sorgt durch versetzt angeordnete Förderrollen für eine bessere Auflage und ruhigeren Lauf des Fördergutes. Zusätzlich hierzu reduzieren versetzt angeordnete Staurollen die Belastung auf Kunststoff-Führungen um 50 %. Dadurch können Kunststoff-Führungen bis zu einer doppelten Gewichtsbelastung eingesetzt werden.

iwis-Stauförderketten gewährleisten das problemlose Positionieren des Transportgutes durch einfache Haltepunkte und vermeiden ein ruckartiges Anfahren und Stoppen der Kette. Die normale Geschwindigkeit der Ketten beträgt 0,1 bis 0,5 m/s. Mittels einer einfachen Beschleunigungsschiene ist eine doppelte Transportgeschwindigkeit bei gleich bleibender Kettengeschwindigkeit an Stellen, bei denen nicht gestaut wird, möglich.

Die Ketten sind durch eine spezielle Wachsschmierung in den Gelenkstellen wartungsarm und sauber. Dieses Schmiermittel wird vor der Kettenmontage gezielt auf die Einzelteile aufgetragen, wodurch die Staurollen, auf denen das Fördergut transportiert wird, fettfrei bleiben. Für Sonderanwendungen ist eine Spezialerstschmierung möglich. Die Förderrollen sind in gehärtetem Stahl, Edelstahl, vernickelt oder Kunststoff (auch antistatisch) erhältlich

Stauförderketten

für effizientere Förderanlagen. Wirtschaftlich und langlebig.

PRODUKTÜBERSICHT

PREMIUM Qualität

MEGAlife-Stauförderketten

Wartungsfreie iwis-Stauförderketten mit vernickelten Laschen und Bolzen, Leichtlaufrollen aus Sintermetall sowie einer speziellen Gelenkausführung werden hauptsächlich in der Elektronikindustrie, in der Lebensmittelindustrie, bei der Holz-, Glas- und Keramikverarbeitung, in der Medizintechnik, in Förderanlagen der Automobilindustrie und überall dort, wo eine Nachschmierung nur bedingt oder gar nicht möglich ist, eingesetzt.

Hervorragendes Verschleißverhalten – auch unter extremen Bedingungen!

- 1 Spezielle Gelenkausführung mit Hülsen aus Sintermetall
- Vernickelte Laschen und Bolzen mit umweltfreundlicher, schmiermittelfreier Oberfläche sorgen für reduzierte Wartungskosten und weniger Stillstandzeiten Ihrer Anlage.

TOP Produkt

iwis-Stauförderetten mit versetzten Rollen

Bei der exklusiven iwis-Stauförderkettengeneration werden die Staurollen versetzt auf jedem Bolzen eingebaut und nicht als eine breite Rolle auf jedem zweiten Bolzen. Somit wird jeder Bolzen zum Übernehmen der Transportlast herangezogen und übergibt diese Last auf die doppelte Anzahl von Laufrollen, was einen sehr positiven Einfluss auf die Kettenführung hat.

- Die versetzt angeordneten Stauförderrollen sorgen für eine optimierte Lastverteilung und eine bessere Auflage sowie einen ruhigeren Lauf des Förderguts.
- Versetzt angeordnete Staurollen reduzieren die lokale Belastung auf die Kettenführung um 50%. Dadurch können z.B. Kunststoffführungen bis zu einer doppelten Gewichtsbelastung eingesetzt werden.
- 3 Leichtlaufrollen aus Sintermetall
- Spezielle Gelenkausführung

iwis-Stauförderketten

iwis-Stauförderketten haben beidseitig außenliegende Laufrollen, die einerseits zur Kraftübertragung in die Verzahnung des Kettenrades eingreifen, andererseits die Abstützung der Kette im Profil übernehmen.

Ihre Besonderheit besteht darin, dass die Buchsen im Innenglied leicht überstehen • und somit Kontaktkorrosion zwischen Innenglied und Außenlasche vermieden wird.

Alle 1/2" und 3/4" iwis-Stauförderketten sind mit Leichtlaufrollen aus Sintermetall 2 ausgestattet die immer extrem leicht laufen und nicht durch Schmierstoff gebremst werden. Dadurch kann Ihre Anlage um 30% länger gebaut werden, ohne die Antriebsmotoren zu verändern bzw. bei gleicher Förderlänge können kleinere Antriebseinheiten verwendet werden. Zusätzlich werden Kette und Antrieb geschont und sorgen damit für eine längere Lebensdauer der kompletten Anlage.

JETZT NEU

Smart Stauförderkette

Know-how trifft Effizienz – die neue **b.smart** Stauförderkette von iwis. Ausgelegt für die meisten Anwendungen im Bereich der Fördertechnik – entwickelt für den optimalen Transport von Fördergut.

Profitieren Sie von robusten und langlebigen **b.smart** Stauförderketten – bewährte **Swis*** Qualität auf einem attraktiven Preisniveau!

Die Lebensdauer einer Kette hängt entscheidend von der richtigen und ausreichenden Nachschmierung ab. Durch die oszillierenden Bewegungen des Kettengelenkes verbraucht sich der Erstschmierstoff je nach Betriebsbedingungen im Laufe der Zeit. Fehlende Schmierung verursacht Grenzreibung, was zu Passungsrostbildung und erhöhtem Kettenverschleiß führt. Daher ist die Auswahl des Schmierstoffes und die richtige Schmiertechnik entscheidend für eine wirkungsvolle Nachschmierung.

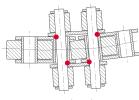
ABSOLUT sicher

Teile- und Fingerschutz

Bei den Stauförderketten mit Finger- und Teileschutz wird der Zwischenraum von einer Stauförderrolle zur nächsten optimal abgedeckt. Das Eindringen von Kleinteilen, die zum Verklemmen der Rollen bzw. des Kettengliedes führen würden, wird verhindert. Ebenfalls schützt die Abdeckung vor einem beabsichtigten oder unbeabsichtigten Eingreifen der Finger während des Förderbetriebes und dient somit als aktive Prävention hinsichtlich der zunehmenden Auflagen des Arbeitsschutzes.

Sicherheit für Mensch und Maschine

- 100%ige Abdeckung des Stauförderrollen-Zwischenraums in Abstimmung des Kettentyps zu den geforderten Umlenkradien
- 2 Feste Montage des Kunststoffclips im Innenglied
- Keine abrasive Beanspruchung des Transportgutes bzw. Werkstückträgers und der Stauförderrollen
- 4 Zwei verschiedene Fingerschutz-Varianten: Mit und ohne Gelenk



Seitenbogen-Stauförderketten

Seitenbogen-Stauförderketten mit versetzten Staurrollen ①: Die Lösung für flexible Umlenkungen bei Fördersystemen mit extrem kleinen Kurvenradien (ab 350 mm). Durch die im Kurvenbereich flächige Anlage ② im Kettengelenk wird die Last optimal verteilt und dadurch der Verschleiß reduziert.

Kontaktpunkte

Unsere Lösung

— Kontaktlinien

೨₩፲§ MEGAlife Stauförderketten

Die wartungsfreien iwis-Stauförderketten

PROBLEM/AUSGANGSLAGE

- Nachschmierung nicht oder nur bedingt möglich
- Reine und trockene Umgebungsbedingungen
- Erschwerter Zugang für Wartungsarbeiten
- Verschmutzung der Anlage und des Fördergutes durch Kettenschmierstoff.

UNSERE LÖSUNG

iwis-Stauförderketten mit vernickelten Laschen und Bolzen, mit Leichtlaufrollen aus Sintermetall sowie einer speziellen Gelenkausführung – eine technische Innovation - die ersten echten wartungsfreien Stauförderketten mit Leichtlaufrollen am Markt.

Bauformen:

- VR: mit versetzten Stauförderrollen
- OS: Standard-Ausführung ohne Scheiben
- M: Standard-Ausführung mit Scheiben

HIGHLIGHTS

- Spezielle Gelenkausführung mit Hülsen aus Sintermetall
- Vernickelte Laschen und Bolzen mit umweltfreundlicher, schmiermittelfreier Oberfläche sorgen für reduzierte Wartungskosten und weniger Stillstandzeiten Ihrer Anlage.

WEITERE HIGHLIGHTS

- Hervorragendes Verschleißverhalten auch in extremen Umgebungen
- Sehr leicht zerlegbar
- Umweltfreundlich, da Oberfläche schmiermittelfrei
- Für Reinraumbedingungen geeignet

TECHNISCHE MERKMALE

- Kettenoberfläche und Staurollen trocken
- Korrosionsgeschützt
- Staurollen wahlweise aus Kunststoff oder Stahl (V2A oder vernickelt)
- Temperaturbereich von −40 °C bis +150 °C (bei Staurollen aus Stahl)
- Stauförderketten lieferbar in VR oder klassischer Ausführung in den Größen 1/2" und 3/4"
- Tragrollen aus Sintermetall verringern den Reibwert. Dadurch reduziert sich die Antriebsleistung und die Belastung auf
- Kunststoffstaurollen naturfarben und antistatisch: kein Verschmutzen des Fördergutes

ANWENDUNGSBRANCHEN

- Elektronikindustrie und Leiterplattenfertigung
- Verpackungs- und Lebensmittelindustrie
- Förderanlagen
- Holz-, Glas- und Keramikverarbeitung
- Medizintechnik
- ... und überall dort, wo eine Nachschmierung nur bedingt oder nicht möglich ist.

Reibkraftvergleich

Kette mit iwis-Leichtlaufrollen

Kette mit klassischen Laufrollen

Lebensdauervergleich (Stauförderketten ohne Nachschmierung)

iwis MEGAlife wartungsfreie Stauförderketten

Standard Wettbewerb

Reibwertvergleich

iwis MEGAlife-Ketten

Standardketten Wettbewerb

L 88 SFS-ML

M 120 SFK-ML

M 120 SFK-ML

M 120 SFS-ML

M 120 SFS-ML

12,70

19,05

19,05

19,05

19,05

40

45

40

45

18,70

29,0

31,5

29,0

31,5

16,00

24,0 / 26,0 / 27,0 / 28,0

24,0 / 26,0 / 27,0 / 28,0

24,0 / 26,0 / 27,0 / 28,0

24,0 / 26,0 / 27,0 / 28,0

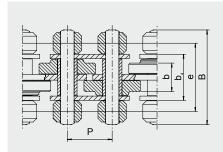
8

10

10

15

15


1,40

1,8

1,8

2,8

2,8

19,55 $SFK-mit\ F\"{o}rderrollen\ aus\ Kunststoff} \quad SFS-mit\ F\"{o}rderrollen\ aus\ geh\"{a}rtetem\ Stahl\ oder-wahlweise\ auch\ mit\ V2A-Staurollen\ aus\ geh\"{o}rtetem\ geh\"{o}rtetem\ geh\"{o}rtetem\ geh\"{o}rtetem\ geh\"{o}rtetem\ geh\"{o}rtetem\ geh\ geh\ geh\ geh\ geh\ geh\r{o}rtetem\ geh\r{o}rtetem$

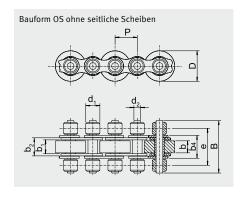
14,50

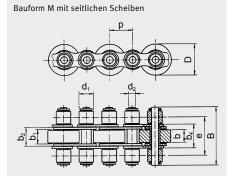
19,55

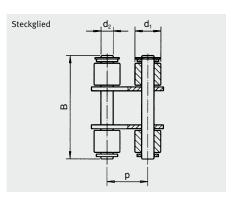
19,55

19,55

9,2


11,70


11,70


11,70

11,70

ć	Förderrolle									derrollen				
imiss Bezoich _{nung}	rellung no	(mm) Ketten	e (mm)	, (mm)	b (mm)	6 (mm)	Breife h.	(mm)	Durchm	a de la companya de l	Tagranier Droganier	Laufion (18)	80/26n	Sewicht (Rep.)
Bauform OS: S	Standard-/	Ausführun	g ohne S	cheiben										
L85 SFK-ML	12,7	27	18,7	7,75	11,3	14,5	7,55	-	16	17	6	8,51	4,45	0,802
L85 SFS-ML	12,7	27	18,7	7,75	11,3	14,5	7,55	-	16	17	8	8,51	4,45	1,223
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
Bauform M: St	tandard-A	usführung	g mit Sche	iben										
M 127 SFK-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFK-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFK-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	2,3
M 127 SFS-ML	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1
M 127 SFS-ML	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	3,1

mit versetzen Stauförderrollen

PROBLEM/AUSGANGSLAGE

- Einfacher und zuverlässiger Transport unterschiedlichster Werkstücke und Werkstückträger
- Kontinuierliches Fördern, Stauen, Vereinzeln und Beschleunigen

UNSERE LÖSUNG

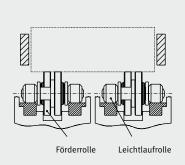
Bei der exklusiven iwis-Stauförderkettengeneration werden die Staurollen versetzt auf jedem Bolzen eingebaut und nicht als eine breite Rolle auf jedem zweiten Bolzen. Somit wird jeder Bolzen zum Übernehmen der Transportlast herangezogen und übergibt diese Last auf die doppelte Anzahl von Laufrollen, was einen sehr positiven Einfluss auf die Kettenführung hat.

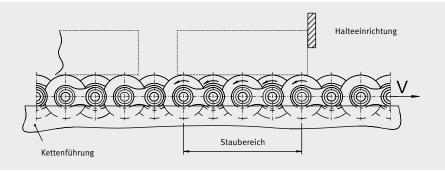
HIGHLIGHTS

- 1 Die versetzt angeordneten Stauförderrollen sorgen für eine optimierte Lastverteilung und eine bessere Auflage sowie einen ruhigeren Lauf des Förderguts.
- Versetzt angeordnete Staurollen reduzieren die lokale Belastung auf die Kettenführung um 50%. Dadurch können z.B. Kunststoffführungen bis zu einer doppelten Gewichtsbelastung eingesetzt werden.

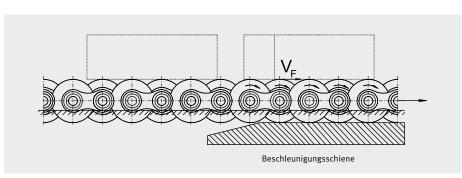
HIGHLIGHTS

- Schonender Transport und optimale Auflage des Fördergutes
- Auch im Staubetrieb nur Rollreibung (siehe Bild unten)

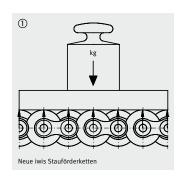

• Stark verminderte Antriebsleistung aufgrund der neu entwickelten Leichtlaufrolle

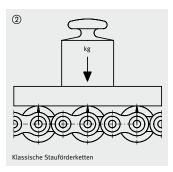

Kette mit:

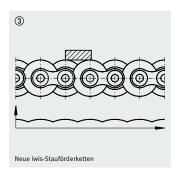
iwis-Leichtlaufrollen

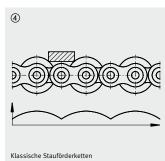

klassischen Laufrollen

REIBKRAFTVERGLEICH

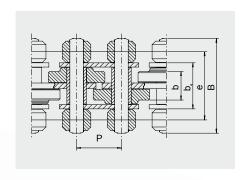



- Problemloses Positionieren des Transportgutes durch einfache Haltepunkte
- Ruckweises Anfahren und Stoppen der Kette entfällt
- Mittels einfacher Beschleunigungsschiene ist eine doppelte Transportgeschwindigkeit möglich (siehe Bild unten)
- Förderrollen wahlweise aus gehärtetem Stahl, Edelstahl, vernickelt oder Kunststoff (auch antistatisch)
- Kette äußerlich sauber, da nur die Gelenkstellen gezielt geschmiert sind
- Voll kompatibel mit vorhandenen Führungen, Umlenkeinheiten und Kettenrädern
- Wartungsarm durch spezielle Wachsschmierung (Standard)
- Spezielle Erstschmierung für Sonderanwendungen auf Anfrage




ZUSÄTZLICHE VORTEILE

- Optimale Lastverteilung, da jeder Bolzen trägt $\, o\,$ Bild $\, extbf{1}$ und $\, extbf{2}$
- Bessere Auflage und dadurch ruhigerer Lauf des F\u00f6rdergutes durch versetzt angeordnete F\u00f6rderrollen → Bild 3 und 4



IWS Beechning	rollen	10 (8) (8) (8) (8) (8) (8) (8) (8) (8) (8)						
Stauförderket	ten mit	versetzt	en Stau	förderro	llen			
L 88 SFK	12,70	27	9,2	14,50	18,70	16,00 ¹)	6	0,85
L 88 SFS	12,70	27	9,2	14,50	18,70	16,00 ¹)	8	1,40
M 120 SFK	19,05	40	11,70	19,55	29,0	24,0 1) / 26,0 / 27,0 1) / 28,0	10	1,8
M 120 SFK	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFS	19,05	40	11,70	19,55	29,0	24,0 1) / 26,0 / 27,0 1) / 28,0	15	2,8
M 120 SFS	19,05	45	11,70	19,55	31,5	24,0 / 26,0 / 27,0 / 28,0	15	2,8

1) Lagerhaltig

SFK – mit Förderrollen aus Kunststoff SFS – mit Förderrollen aus gehärtetem Stahl

Standard-Stauförderketten

Einfacher und zuverlässiger Transport von Werkstückträgern

PROBLEM/AUSGANGSLAGE

- Einfacher und zuverlässiger Transport unterschiedlichster Werkstücke und Werkstückträger
- Kontinuierliches Fördern, Stauen, Vereinzeln und Beschleunigen

UNSERE LÖSUNG

Stauförderketten der Marke JWIS haben beidseitig außenliegende Laufrollen, die einerseits zur Kraftübertragung in die Verzahnung des Kettenrades eingreifen, andererseits die Abstützung der Kette im Profil übernehmen.

Ihre Besonderheit besteht darin, dass die Buchsen im Innenglied leicht überstehen und somit Kontaktkorrosion zwischen Innenglied & Außenlasche vermieden wird.

++ EXKLUSIV ++

Alle 1/2" und 3/4" JWIS-Stauförderketten sind mit Leichtlaufrollen aus Sintermetall ausgestattet die immer extrem leicht laufen und nicht durch Schmierstoff gebremst werden. Dadurch kann Ihre Anlage um 30% länger gebaut werden, ohne die Antriebsmotoren zu verändern bzw. bei gleicher Förderlänge können kleinere Antriebseinheiten verwendet werden. Zusätzlich werden Kette und Antrieb geschont und sorgen damit für eine längere Lebensdauer der kompletten Anlage.

HIGHLIGHTS

- Schonender Transport und optimale Auflage des Fördergutes
- Auch im Staubetrieb nur Rollreibung (siehe Bild unten)
- Stark verminderte Antriebsleistung aufgrund der neu entwickelten Leichtlaufrolle

REIBKRAFTVERGLEICH

Kette mit:

iwis-Leichtlaufrollen

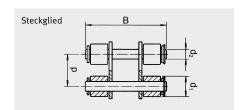
klassischen Laufrollen

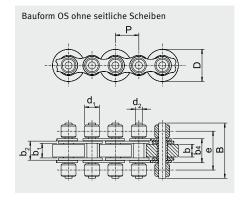
IPW-GESCHMIERTE JWIS-STAUFÖRDERKETTEN

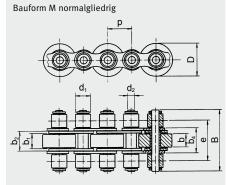
Gezielte Beölung der Hülsen sowohl innen als auch außen

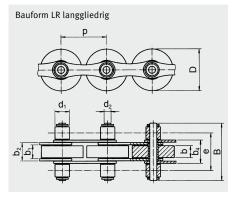
Das Besondere an unseren IPWgeschmierten **TWIS** Stauförderketten:

Die Schmierung der Stauförderketten erfolgt während der Fertigung durch ein Inline-Verfahren. In jedes Kettengelenk wird punktuell die exakt optimierte Schmierstoffmenge aufgetragen. JWIS-Stauförderketten werden nicht wie sonst am Markt üblich getaucht. Das hat folgende Vorteile:


HIGHLIGHTS


- JWIS-Stauförderketten sind äußerlich trocken
- Das Fördergut kommt nicht mit dem Schmierstoff im Kontakt
- Keine Überschmierung und somit kein "Abtropfen" in anwendungsnahen Bereichen
- Eine saubere Umgebung ist gewährleistet
- Die Kette nimmt keine Verschmutzungen/ Partikel/Fasern/Stäube auf.


^	- /	/ ,		/ / / /				/	Förderrollen			,	Durchmesser		
Sind Section 1	, John John John John John John John John	s D (mm) Kett	chpeite Blam)	o de la composición dela composición dela composición de la composición dela composición dela composición de la composición de la composición dela composición de la composición dela com		(m.) 9 °	Breife,	(mm) _Q	Durch	, 688er	Tagraniek Dropaniek	(By) office y	BOLZ	Gewicht (Re.	
Bauform OS: Sta		führung o	hne Sche	iben											
L85 SFK	12,7	27	18,7	7,75	11,35	14,5	7,55	-	16	-	6	8,51	4,45	0,802	
L85 SFS	12,7	27	18,7	7,75	11,35	14,5	7,55	-	16	-	8	8,51	4,45	1,220	
M 127 SFK	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,550	
M 127 SFS	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0 1)	15	12,07	5,72	2,592	
Bauform M: Sta	ndard-Ausf	ührung													
M 127 SFK ²⁾	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,742	
M 127 SFK	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0 1)	28,0	10	12,07	5,72	1,646	
M 127 SFK	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	10	12,07	5,72	1,920	
M 127 SFS ²⁾	19,05	40	27,5	11,75	15,62	19,55	11,0	24,0	26,0	28,0	15	12,07	5,72	2,688	
M 127 SFS	19,05	43	29,0	11,75	15,62	19,55	11,0	24,0	26,0 1)	28,0	15	12,07	5,72	2,688	
M 127 SFS	19,05	48	31,5	11,75	15,62	19,55	11,0	24,0 1)	26,0	28,0	15	12,07	5,72	2,880	
M 1611 SFK ²⁾	25,4	65	44,9	17,02	25,45	32,0	16,5	38,5	-	-	25	15,88	8,28	4,104	
M 1611 SFS ²⁾	25,4	65	44,9	17,02	25,45	32,0	16,5	38,5	-	-	30	15,88	8,28	6,552	
D 1611 SFS ²⁾	25,4	99	76,9	17,02	25,45	63,4	16,5	38,5	-	-	30	15,88	8,28	11,584	
Bauform LR: Ver	rsion langg	liedrig													
LR 165 SFK ²⁾	25,4	30,7	20,0	7,75	11,30	14,65	7,5	24,0	-	_	6	8,52	4,45	0,792	
LR 247 SFK	38,1	48	31,5	11,75	15,62	19,55	11,0	24,0	35	-	10	12,07	5,72	1,200	
LR 247 SFS	38,1	48	31,5	11,75	15,62	19,55	11,0	24,0	35	-	15	12,07	5,72	2,016	
LR 3211 SFK ²⁾	50,8	67,9	44,9	17,02	25,45	32,0	16,5	50,0	38,5	-	25	15,88	8,28	2,764	
LR 3211 SFS ²⁾	50,8	67,9	44,9	17,02	25,45	32,0	16,5	50,0	38,5	_	30	15,88	8,28	5,236	


¹⁾ Lagerhaltig 2) Ketten ohne Leichtlaufrollen

SFK – mit Förderrollen aus Kunststoff SFS – mit Förderrollen aus gehärtetem Stahl

<u> তি</u> তি smart Stauförderketten

Optimaler Transport von Fördergut

PROBLEM/AUSGANGSLAGE

- Einfacher und zuverlässiger Transport unterschiedlichster Werkstücke und Werkstückträger
- Kontinuierliches Fördern, Stauen, Vereinzeln und Beschleunigen

KNOW-HOW TRIFFT EFFIZIENZ

Profitieren Sie von robusten und langlebigen **b.smart** Stauförderketten – bewährte "" Qualität auf einem attraktiven Preisniveau!

Ausgelegt für kostenoptimierte Anwendungen im Bereich der Fördertechnik – entwickelt für den optimalen Transport von Fördergut.

OPTIMALE NACHSCHMIERUNG

Die Lebensdauer einer Kette hängt entscheidend von der richtigen und ausreichenden Nachschmierung ab. Durch die oszillierenden Bewegungen des Kettengelenkes verbraucht sich der Erstschmierstoff je nach Betriebsbedingungen im Laufe der Zeit. Fehlende Schmierung verursacht Grenzreibung, was zu Passungsrostbildung und erhöhtem Kettenverschleiß führt. Daher ist die Auswahl des Schmierstoffes und die richtige Schmiertechnik entscheidend für eine wirkungsvolle Nachschmierung.

Stauförderketten mit Teile- und Fingerschutz

Absolut sicher

PROBLEM/AUSGANGSLAGE

- Einfacher und zuverlässiger Transport unterschiedlichster Werkstücke und Werkstückträger
- Kontinuierliches Fördern, Stauen, Vereinzeln und Beschleunigen

UNSERE LÖSUNG

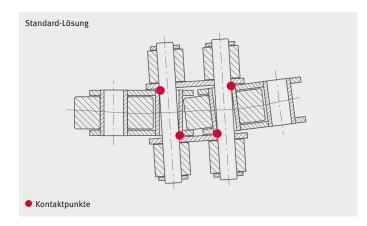
Bei den Stauförderketten mit Finger- und Teileschutz wird der Zwischenraum von einer Stauförderrolle zur nächsten optimal abgedeckt. Das Eindringen von Kleinteilen, die zum Verklemmen der Rollen bzw. des Kettengliedes führen würden, wird verhindert. Ebenfalls schützt die Abdeckung vor einem beabsichtigten oder unbeabsichtigten Eingreifen der Finger während des Förderbetriebes und dient somit als aktive Prävention hinsichtlich der zunehmenden Auflagen des Arbeitsschutzes.

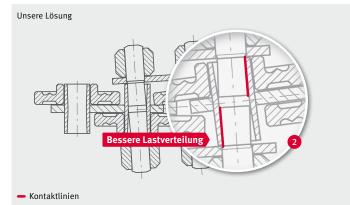
SICHER FÜR MENSCH & MASCHINE

- 100%ige Abdeckung des Stauförderrollen-Zwischenraums in Abstimmung des Kettentyps zu den geforderten Umlenkradien
- Feste Montage des Kunststoffclips im Innenglied
- Steine abrasive Beanspruchung des Transportgutes bzw. Werkstückträgers und der Stauförderrollen
- Zwei verschiedene Fingerschutz-Varianten: Mit und ohne Gelenk

<u> তিথের</u> Seitenbogen-Stauförderketten

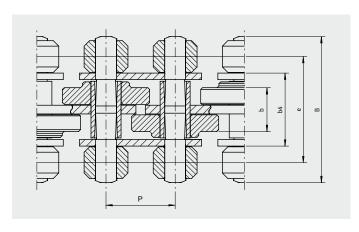
Ideal für Fördersystemen mit extrem kleinen Kurvenradien




UNSERE LÖSUNG

Typ L 88 SF-SB und M 120 SF-SB neue Ausführung – **Die Lösung** für modulare Umlenkung bei Fördersystemen

HIGHLIGHTS


Seitenbogen-Stauförderketten mit versetzten Staurrollen 1: Die Lösung für flexible Umlenkungen bei Fördersystemen mit extrem kleinen Kurvenradien (ab 350 mm). Durch die im Kurvenbereich flächige Anlage 2 im Kettengelenk wird die Last optimal verteilt und dadurch der Verschleiß reduziert.

Seny My Seny M	Pollung Do Pro-	8(m)	Kette	enbreite	c (mm)	Outship Ssep	irderrollen	Semichiaem)
Seitenbogen-Stauförderk	etten							
L 88 SFS-SB	12,70	27	9,2	15,0	18,70	16,00	8	1,10
L 88 SFK-SB	12,70	27	9,2	15,0	18,70	16,00	8	0,80
M 120 SFK-SB	19,05	40	11,70	20,10	29,0	24,0 / 26,0 / 27,0 / 28,0	10	1,8
M 120 SFS-SB	19,05	40	11,70	20,10	29,0	24,0 / 26,0 / 27,0 / 28,0	15	2,8

Steckgliedmaße weichen ab

Hinweise

Stauförderketten

WARTUNGSHINWEISE FÜR STAUFÖRDERKETTEN

Wie bei jeder Rollenkette unterliegen auch die »Lagerstellen« der Stauförderkette einem natürlichen Verschleiß. Um diesen zu vermindern und damit die Lebensdauer der Kette zu erhöhen, sind richtige Spannung, gute Führung und wirksame Nachschmierung notwendig.

Bei einer Verschleißlängung von bis zu 2 % arbeitet eine Stauförderkette einwandfrei. unter der Voraussetzung, dass sie laufend nachgespannt wird. Als Richtwert für die Vorspannung können ca. 5 % der tatsächlich auftretenden Kettenzugkraft angesetzt werden.

Stauförderketten sind werkseitig mit einer hochwertigen Erstschmierung versehen. Der Schmierstoff verbraucht sich im Laufe der Zeit und eine wirksame und regelmäßige Nachschmierung ist erforderlich. Dabei muss darauf geachtet werden, dass die Schmierung an den richtigen Stellen (»Lagerstellen«) erfolgt und das Schmiermittel kriechfähig ist.

HINWEISE ZUR AUSLEGUNG VON STAUFÖRDERKETTEN

Wichtige Kriterien bei der Auswahl einer Stauförderkette sind:

- Belastung der Förderrollen durch das Gewicht des aufliegenden Fördergutes. Die Tragfähigkeit je Rolle ist in den Tabellen angegeben. Bei Unebenheit der Auflageflächen des Fördergutes wird abgeschätzt, wie viele Förderrollen tatsächlich tragen.
- Belastung der Kette durch im Betrieb auftretende Zugkräfte. Die wichtigsten Einflussgrößen sind das Gewicht des Fördergutes und die Reibfaktoren. Folgende Zugkräfte treten bei Stauförderketten auf:
 - aus Reibwiderstand zwischen Laufrolle und Kettenbolzen
 - aus Reibwiderstand zwischen Förderrolle und Kettenhülse im Staubetrieb
 - aus Rollwiderstand beim Abrollen der Laufrollen auf den Kettenführungen und beim Abrollen des Fördergutes über die Förderrollen.

Überschlägige Ermittlung der Kettenzugkraft F je Kettenstrang:

$$F = \frac{\mu \cdot 9,81 \cdot Q \cdot 1,4}{n} [N]$$

 μ = Reibwert = 0,08-0,3 je nach:

- Materialpaarung: Stahl/Stahl oder Kunststoff/Stahl
- Zustand der Reibflächen: trocken oder gefettet
- Verschmutzungsgrad der Reibflächen

Q = Gesamtfördergewicht [kg]

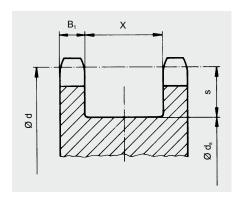
n = Anzahl der Kettenstränge

Die Formel gilt bei gleichmäßiger Verteilung der Gewichtsbelastung auf die Kettenstränge. Falls das Fördergut wegen Unebenheiten nicht vollständig aufliegt, wird abgeschätzt, wieviel Prozent der Auflagelänge tatsächlich wirksam ist. Entsprechend höher ist die Zugkraft je Kettenstrang.

EMPFOHLENE MAX. FÖRDERLÄNGE

Je nach Belastung 25 – 30 m. Auf parallele und exakte Führung ist zu achten.

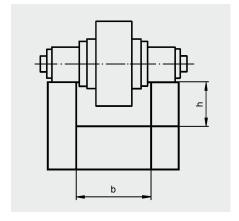
EINSATZBEREICH STAUFÖRDERKETTEN


- In vielen Bereichen der Fördertechnik
- Bei Verkettungen in Bearbeitungsund Montagestraßen
- In der Lagertechnik
- In unterschiedlichen Materialflusssystemen
- ... und überall dort, wo Werkstücke, Lagerteile, Paletten, Behälter, Kisten etc. auf einfache Art und Weise gefördert, gestaut, beschleunigt und separiert werden müssen.

ZUGKRAFTEMPFEHLUNGEN

Kettentyp	empfohlene max. Zugbelastung [N]
L 88 SF	1500
L 85 SF	2300
M 120 SF	2500
M 127 SF	4000
M 1611 SF	5000
D 1611 SF	10000

Zubehör

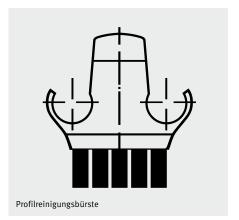

KETTENRÄDER FÜR STAUFÖRDERKETTEN

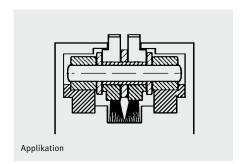
iwis-Bezeichnung	Teilung p (mm)	B ₁ (mm)	X (mm)	s (mm)
L 88 SF	12,7	4	15,5	10
M 120 SF-B40	19,05	8,3	20,7	15,0
M 127 SF-B40/B43	19,05	8,3	20,7	15,0
M 120 SF-B45	19,05	10,8	20,7	15,0
M 127 SF-B48	19,05	10,8	20,7	15,0
M 1611 SF	25,4	11,6	33,3	20,5

 $d_s = d - 2s$ d = p : sin (180° : z) Empfohlene Mindestzähnezahl z = 15

KETTENFÜHRUNG/BEISPIEL

iwis-Kette	b (mm)	h (mm)
L 88 SF	15	10
L 88 SF SB	15,5	10
M 120 SF	20	15
M 120 SF SB	21	15
M 127 SF	20	15
M 1611 SF	33	20


WERKZEUG


BESTELL-NR. 40000646

Werkzeug zum Zerlegen von Stauförderketten M 120 SF und M 127 SF mit Teilung 3/4" (lagerhaltig)

PROFILREINIGUNGSBÜRSTE

Bürste zur Reinigung des Förderprofils. Vielseitig anwendbar, insbesondere bei stark beanspruchten Anlagen (zum Beispiel: Metallspäne, Schweißperlen, Staub usw.). Nur lieferbar für die neue Stauförderkettengeneration der L 88 SF und M 120 SF.

iwis bietet eine umfangreiche Palette von Spezialförderketten für unterschiedliche Industrieanwendungen und Anforderungen an. Während die iwis-Plattenkette dort eingesetzt wird, wo es auf ruhiges und sicheres Fördern durch engste Kurven ankommt, werden die Transferketten für schonende Transporte eingesetzt. iwis-Gripketten werden überall dort genutzt, wo platten- und bahnenförmige Materialien ein- und abgezogen, transportiert oder positioniert werden. Weitere Spezialförderketten des iwis-Spezialförderketten-Programms: Dosen- und Tubenketten, Palettentransportketten, Flyerketten, Seitenbogenketten, Schubketten und Hohlbolzenketten.

المحتودة Gripketten

Sicheres Zuführen, Transportieren und Positionieren von dünnwandigen, großflächigen Weichfolien und Plattenmaterialien

PRODUKTPROGRAMM

Version **B**

Version C

Version **D**

Version **E**

Mit 1 Spitze

Mit 2 Spitzen

Klemmfläche

Mit Tellergreifer

Mit Klammer F

HIGHLIGHTS

- iwis-Hochleistungsketten mit ausgezeichneter Verschleißbeständigkeit
- Geringe Anfangslängung aufgrund optimalen Vorreck-Prozesses
- Höchste Kettensteifigkeit ermöglicht Anwendungen auch in langen Maschinen
- Grundketten sind chemisch vernickelt / MEGAlife-Versionen in wartungsfreier Ausführung auf Anfrage möglich
- Exzellentes Parallel- bzw. Synchronlaufverhalten der Ketten aufgrund identischer Kettenlänge (innerhalb des gewählten Toleranzbereichs)
- Durch unterschiedliche Federkräfte können verschiedenste Materialien schonend gegriffen und sicher gehalten werden
- · Fertigung in eingeschränkten Längentoleranzen möglich
- Empfohlene maximale Anwendungsgeschwindigkeit:
 - --- 2 m/s bei der 1/2"-Gripkette ---> 1,2 m/s bei der 5/8"-Gripkette.
 - Bei höheren Geschwindigkeiten sind geänderte Steuergeometrien erforderlich.
- iwis bietet Komplettlösungen an sofort einbaufertig!

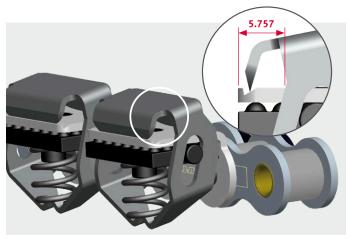
FLYER

Mehr Informationen finden Sie in unserem Produktflyer.

Alle Ketten

Spezialförderketten

UNSERE EMPFEHLUNG: DIE IWIS-KOMPLETTLÖSUNG


DERZEITIGE LÖSUNG

- Wenig Platz zum Einlegen der Folie
- Punktuelle Lasteinleitung in die Folie kann zum Reißen der Folie und damit verbunden zu Geräuschentwicklung führen.
- Deformation der Folie an der Klammerkontur

4.253

UNSERE LÖSUNG

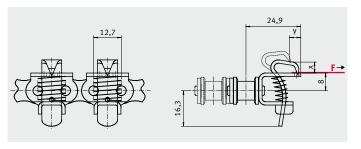
- Klammer trifft präzise in die Sicke
- Bessere Haltekraft gegenüber Wettbewerbsketten
- Haltekraft ist abhängig von der Kunststofffolie
- Optimierte Funktionssicherheit und Hygiene durch Noppenplatte
- Bessere Folienzufuhr durch mehr Freiraum im Einlegebereich
- Folien verziehen nicht und werden nicht an der Klammerkontur deformiert
- Geringere Geräuschbelastung
- Besseres Entfernen der Folienreste am Anlagenauslauf

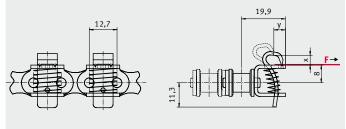
المحتودة Gripketten

Sicheres Zuführen, Transportieren und Positionieren von dünnwandigen, großflächigen Weichfolien und Plattenmaterialien

GRIPKETTEN "MIT 1 SPITZE"

TECHNISCHE MERKMALE


- Einfach- und Zweifachkette 1/2 x 5/16" nach ISO 606
- Greifer mit 1 Spitze, Sonderausführungen auf Anfrage
- Haltekraft ist abhängig von Fördergut und Federausführung unterschiedliche Anzahl von Windungen und Federdrahtdurchmessern erhältlich
- Durch Auflaufen auf eine Steuerscheibe (z.B. Kettenradnabe) öffnet der Greifer und schwenkt dabei nach außen weg
- · Lebensmittelechte Erstschmierung
- Gestaltung der Kettenräder auf Anfrage


iwis-Bez.	DIN ISO	Teilung p [mm]	Ø Folien- haltekraft F * [N]	Feder	х	у	ArtNr.
L 85 Grip	08 B-1	12,7	10	0,7 x 6	5	6	50007495
L 85 Grip	08 B-1	12,7	24	0,9 x 5	4	5	50034722
D 85 Grip	08 B-2	12,7	10	0,7 x 6	5	6	50007033

TECHNISCHE MERKMALE

- Einfach- und Zweifachkette 1/2 x 5/16" nach ISO 606
- Greifer mit 2 Spitzen, Sonderausführungen auf Anfrage
- Haltekraft ist abhängig von Fördergut und Federausführung unterschiedliche Anzahl von Windungen und Federdrahtdurchmessern erhältlich
- Durch Auflaufen auf eine Steuerscheibe (z.B. Kettenradnabe) öffnet der Greifer und schwenkt dabei nach außen weg
- Höhere Haltekraft im Vergleich zur Gripkette "mit 1 Spitze"
- Lebensmittelechte Erstschmierung
- · Gestaltung der Kettenräder auf Anfrage

iwis Bez.	DIN ISO	Teilung p [mm]	Ø Folien- haltekraft F * [N]	Х	У	ArtNr.
L 85 Grip	08 B-1	12,7	35	3,0	4,5	50024958

Maße x und y sind abhängig von eingesetzter Feder. Dies sind die Maximalwerte für den Öffnungshub. Ein geringerer Öffnungshub verlängert die Lebensdauer der Feder.

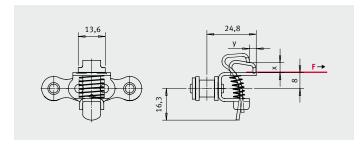
* Die durchschnittliche Folienhaltekraft (F) wurde durch Referenzfolien ermittelt.

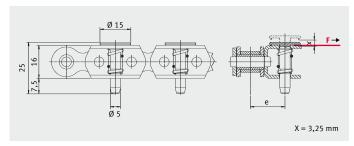
Konkrete Werte sind abhängig von der eingesetzten Folie (Material, Oberfläche, Folienstärke). Abweichungen sind möglich.

GRIPKETTEN "FLACHE GREIFER"

GRIPKETTEN "TELLERGREIFER"

TECHNISCHE MERKMALE


- Einfach- und Zweifachkette 1/2 x 5/16" nach ISO 606
- Greiferausführung mit ebener Klemmfläche
- Haltekraft ist abhängig von Fördergut und Federausführung – unterschiedliche Anzahl von Windungen und Federdrahtdurchmessern erhältlich
- Durch Auflaufen auf eine Steuerscheibe (z.B. Kettenradnabe) öffnet der Greifer und schwenkt dabei nach außen weg
- Schonende Materialhandhabung
- Geringe Übertragungskräfte
- Gestaltung der Kettenräder auf Anfrage
- Auch bei Papier einsetzbar


iwis-Bez.	DIN ISO	Teilung p [mm]	Ø Folien- haltekraft F * [N]	Feder	Х	у	ArtNr.
L 85 Grip	08 B-1	12,7	3	0,7 x 6	5	3,5	50037062
L 85 Grip	08 B-1	12,7	5	0,9 x 5	4	2,8	50035540
D 85 Grip	08 B-2	12,7	3	0,7 x 6	5	3,5	50032581

TECHNISCHE MERKMALE

- Einfachkette 1/2 x 5/16" oder 5/8 x 3/8" nach ISO 606
- Rotationssymmetrisches Grip-Element
- Extrem flache Tellergreifer
- Haltekraft ist abhängig von Fördergut und Federausführung – unterschiedliche Anzahl von Windungen und Federdrahtdurchmessern erhältlich
- iwis-Patent (Feder ist ohne zusätzliche Befestigungselemente)
- Kein Wegschwenken nach Außen beim Öffnen
- Gestaltung der Kettenräder auf Anfrage

iwis-Bez.	DINISO	Teilung p [mm]	Ø Folien- haltekraft F * [N]	е	ArtNr.
M 106 Grip	10 B-1	15,875	70	16,8	50034301
L 85 Grip	08 B-1	12,7	70	15,8	50035491

Maße x und y sind abhängig von eingesetzter Feder. Dies sind die Maximalwerte für den Öffnungshub. Ein geringerer Öffnungshub verlängert die Lebensdauer der Feder. * Die durchschnittliche Folienhaltekraft (F) wurde durch Referenzfolien ermittelt.

Konkrete Werte sind abhängig von der eingesetzten Folie (Material, Oberfläche, Folienstärke). Abweichungen sind möglich.

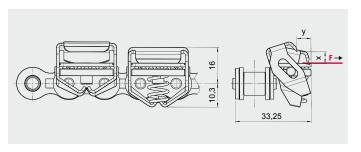
المحتودة Gripketten

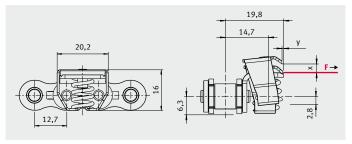
Sicheres Zuführen, Transportieren und Positionieren von dünnwandigen, großflächigen Weichfolien und Plattenmaterialien

GRIPKETTEN "MIT KLAMMER E"

GRIPKETTEN "MIT KLAMMER F"

TECHNISCHE MERKMALE


- Optimierung der Gripkette M106 mit einseitiger Winkellasche 202.6 und Lieferung als Komplettlösung mit Greifersystem, bestehend aus Klammer, Noppenplatte und Feder
- Klammer und Feder aus korrosionsbeständigem Stahl
- Kette ist chemisch vernickelt
- Mit Langzeitschmierung oder lebensmittelechter Schmierung
- Alternativ: M106 Standardkette auch ohne Greifersystem lieferbar (Bestückung mit eigenen Greifern möglich)
- Federn mit optimierter Oberflächenstruktur


iwis-Bez.	DIN ISO	Teilung p [mm]	Ø Folien- haltekraft F * [N]	Х	у	ArtNr.
M 106 Grip	10 B-1	15,875	85	4,9	6,1	50039260

TECHNISCHE MERKMALE

- Einfach- und Zweifachkette 1/2 x 5/16" nach ISO 606
- Greifer als Klammer ausgebildet
- Klammer mit durchgehend scharfer Haltekante
- Haltekraft ist abhängig vom Fördergut
- Klammer und Druckfeder aus Federstahl rostfrei
- Durch Auflaufen auf eine spezielle Geometrie des Kettenrades öffnet der Greifer mit einer leichten Seitwärtsbewegung
- Lebensmittelechte Erstschmierung
- · Gestaltung der Kettenräder auf Anfrage

iwis-Bez.	08 B-1	p [mm]	haltekraft F* [N]	Feder 1,3 x 5,5	X	y 0,6	ArtNr. 50045980
		Teilung	Ø Folien-				

Maße x und y sind abhängig von eingesetzter Feder. Dies sind die Maximalwerte für den Öffnungshub. Ein geringerer Öffnungshub verlängert die Lebensdauer der Feder. * Die durchschnittliche Folienhaltekraft (F) wurde durch Referenzfolien ermittelt.

Konkrete Werte sind abhängig von der eingesetzten Folie (Material, Oberfläche, Folienstärke). Abweichungen sind möglich.

Tubentransportketten

Schonende Aufnahme und zuverlässiger Transport von dünnwandigen Hohlkörpern

PROBLEM/AUSGANGSLAGE

Schonende Aufnahme und zuverlässiger Transport von dünnwandigen Hohlkörpern durch mehrere Bearbeitungsstationen (Reinigen, Lackieren, Trocknen...).

UNSERE LÖSUNG

iwis-Hochleistungsrollenketten mit rostbeständigen, leicht auswechselbaren Anbauteilen. **Exklusiv von iwis.**

HIGHLIGHTS

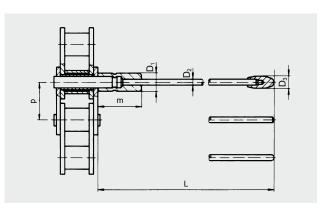
- Problemloser Austausch der Transportstäbe mit speziellem iwis-Werkzeug möglich, ohne die Kette zu trennen oder aus der Maschine zu entnehmen.
- Adapter und Stäbe aus hochlegierten rostbeständigen Stählen mit guten elastischen Eigenschaften
- Hohe Lebensdauer aufgrund der Verwendung der iwis-Standard-Präzisionskette mit besonders verschleißfesten SL-Bolzen
- Transportstäbe in Millimeterabstufung erhältlich
- Unterschiedliche Geometrie der Stabenden – auch Schutzköpfe aus Alu oder Kunststoff verfügbar
- Turnus der Stäbe frei wählbar
- Grundketten auch in wartungsfreier Ausführung verfügbar
- 1/2", 5/8" und 3/4"-Kette auch in Seitenbogenausführung (nur ANSI) verfügbar

TECHNISCHE MERKMALE

- Das Einbauteil (Adapter & Stift) wird auf die verlängerten Bolzen der Grundkette gesteckt und durch versicken gesichert
- Durch Aufbrechen des Adapters mit dem iwis-Spezialwerkzeug (siehe Bild) ist im Reparaturfall der Stab schnell und einfach auswechselbar.
- i Entsprechendes Werkzeug zur Montage und Demontage lieferbar.

ANWENDUNGSBRANCHEN

 Überall dort, wo Tuben und andere dünnwandige Hohlkörper (Dosen) transportiert, gereinigt, lackiert, getrocknet ... werden.


Anfrageformular Tubentransportketten: www.iwis.de/

tubentransportketten-anfrage

05/	I'm's 88 ceich ung	reilung mm)	1. May. (Mr.)	(m) (mu),	In (min)	o (mm)	o (mm)
08B-1	L 85 SL	12,7	300	8,0	22,0	4,0	8,0
10B-1	M 106 SL	15,875	300	8,0	22,0	4,0	8,0
12B-1	M 127 SL	19,05	300	8,0	22,0	4,0	8,0
12 A-1 ANSI 60	M 128 ASL	19,05	300	8,0	22,0	4,0	8,0

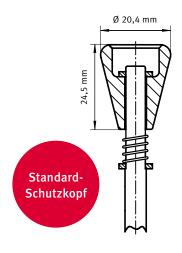
Bei Anfragen oder Bestellung bitte Länge L angeben.

Dosentransportketten

Zuverlässiger und sicherer Transport von Dosen

Zuverlässiger und sicherer Transport von Dosen und anderen dünnwandigen Hohlkörpern bei hohen Geschwindigkeiten und hohen Temperaturen.

iwis-Hochleistungsketten sind besonders verschleißfest; sie verfügen zudem über speziell angepasste Stäbe und hochwertige Schutzköpfe – die richtige Lösung für jede 2-Teil-Dosenanwendung!


iwis POChain-P iwis POChain-P

HIGHLIGHTS

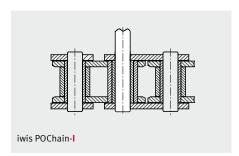
Spezialförderketten

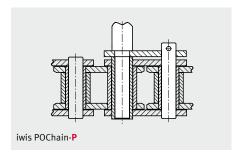
- iwis-Präzisionsrollenketten sind langlebig, zuverlässig und besonders verschleißfest.
- iwis-Dosentransportketten werden für die Dosenherstellung initial mit unserer Spezialschmierung IPP geschmiert. IPP ist LABS-frei und abtropffest, hat eine sehr geringe Verdampfungsrate, ist für hohe Temperaturen geeignet und für die Lebensmittelindustrie zugelassen.
- Standard-Schutzkopf: Hochleistungsmaterial (PEEK), sehr temperaturbeständig (bis zu min. 260 °C; je nach Anwendungsfall). PEEK ist sehr beständig gegenüber Chemikalien. Schutzköpfe auch optional mit Schiebesitzscheiben verfügbar, falls anwendungsbedingt notwendig (nur empfohlen für schmutzunkritische Anwendungen).
- Transportstablängen können entsprechend Ihrer Spezifikation angepasst werden.
- Transportstäbe: einfaches Auswechseln in der Produktionsanlage, ohne die Kette trennen oder aus der Maschine entnehmen zu müssen (POChain-P/-S)

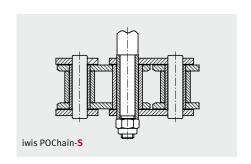
- Transportstäbe können in definierten Abständen angebracht werden (z. B. bei jedem 7. Bolzen).
- iwis bietet drei Fixierungslösungen für Transportstäbe an:
 - POChain-I: Bolzen sind in die Außenlaschen integriert
 - POChain-P: Splintfixierung
 - POChain-S: Bolzen werden mit Spezialmuttern fixiert
- Temperaturbereich: 0 °C bis +260 °C

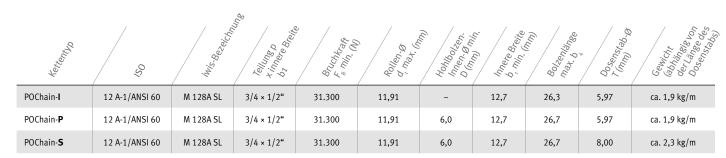
ANWENDUNGSBRANCHEN

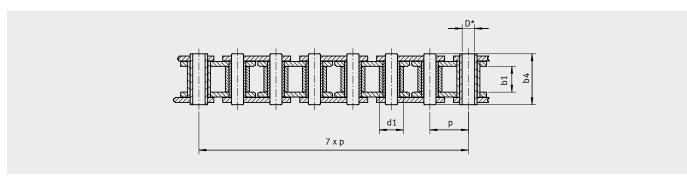
 Überall dort, wo Dosen oder andere dünnwandige Hohlkörper transportiert, lackiert, getrocknet werden.


Anfrageformular POChain: www.iwis.de/**POChain-anfrage**


ZWEI STABAUSFÜHRUNGEN


Biegsamer Stab: Diese Stäbe sind robust und zugleich biegsam konstruiert, damit sie einem unbeabsichtigten Stoß durch Rückstau bzw. einem zufälligen Kontakt mit dem Maschinenrahmen widerstehen können. Die Stäbe lassen sich leicht und per Hand in ihre ursprüngliche Position zurückbiegen.


Snap-off Stab: Diese Stäbe sind so spezifiziert, dass sie bei einem unbeabsichtigten Kontakt bzw. Stoß während des Betriebs brechen. Der Vorteil für Sie: Die Stäbe verschleißen in der gleichen Geschwindigkeit wie die Bolzen der Basiskette, da sie die gleiche Härte besitzen.


UNSERE FIXIERUNGSLÖSUNGEN

Hinweis: Mit * gekennzeichnete Maße gelten nur für POChain-P/S. K bezeichnet das Maß von der Außenlasche bis Kopfende.

HIGHLIGHTS IWIS ELASTIC CAN TIP (ECT)

- Weniger komplexer Aufbau: Ein Hochtemperatur-Elastomerkopf ersetzt einen PEEK-Schutzkopf, drei Distanzscheiben und eine Feder!
- Gestaltung und Materialeigenschaften des Elastomerkopfs sorgen für die Dämpfungseigenschaften einer Feder.
- Schadhafte Köpfe lassen sich leicht und ohne Werkzeug auswechseln.
- Selbst schadhafte Köpfe besitzen Notlaufeigenschaften.

- ECT-Material ist LABS-frei und von der FDA zugelassen!
- Beschädigung von dünnwandigen Getränkedosen ausgeschlossen.
- Für Temperaturen bis 215 °C geeignet. Ab sofort verfügbar!

Neue iwis-Kopflösungen für Ihre besonderen Anforderungen: innovativ und patentiert

NOMENKLATUR

Unsere präzise Nomenklatur vereinfacht Ihren Bestellprozess. Dank detaillierter Kennzeichnung finden und bestellen Sie schnell und problemlos genau die richtige Kette für Ihren Anwendungszweck – egal ob schriftlich, telefonisch oder über unser Onlineanfrageformular.

www.iwis.de/POChain-anfrage

60-M128A-ST-I-7-7.060-SO-P-S-322L-POChain

- 1 [ST] Standard mit IPP-Schmierung
- [I] Integral [P] Einsteck [S] Gewinde
- 3 Stabintervall (jeder 7. Bolzen)
- 4 Stablänge Maß K (4-stellig Zoll bzw. 4-stellig mm)
- 5 [SO] Snap-off Stab [BE] Biegsamer Stab
- 6 [P] PEEK [E] Elastomer Standard-ECT [ES] Sonderkonus Elastomer-ECT
- **7** [**S**] ohne lose Distanzscheibe [**W**] mit loser Distanzscheibe
- 8 Einzelkettenlänge (Glieder)

Schubketten

Kompakt, flexibel, stark!

PROBLEM/AUSGANGSLAGE

- Eingeschränkte Bauräume
- Aufnahme bzw. Übertragung von Druckkräften in und senkrecht zur Laufrichtung
- Umlenkung von Druckkräften von beliebigen Winkel

UNSERE LÖSUNG

iwis-Schubketten zeichnen sich durch eine kompakte Bauweise aus. Sie eignen sich zur Übertragung von Druck- und Zugkräften, für die eine Kettenführung nicht notwendig ist. Chain engineering für den kleinsten Bauraum.

HIGHLIGHTS

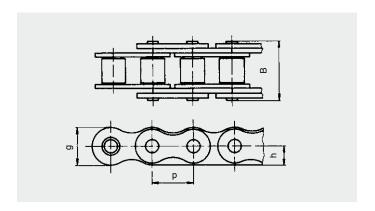
- Schubketten sind nur in eine Richtung gelenkig drehbar.
- Kompakte Bauweise für eine größtmögliche Funktionalität
- Zum Schieben von Lasten und zum Überbrücken von Abständen ohne Führung
- Umwandlung von translatorischen Zug- und Druckkräften in rotatorische Bewegungen und andersherum
- Versch. Materialspezifikationen möglich
- JWIS-Endstücke sind die Schnittstelle zwischen Schubkette und Antriebsbzw. Schubelement und erzeugen die notwendige Vorspannung der Kette.
 - Einfache Montage mit Normteilen
 - Auf Wunsch individuelle Schnittstelle möglich
- Edelstahl-Sonderausführungen sind möglich.

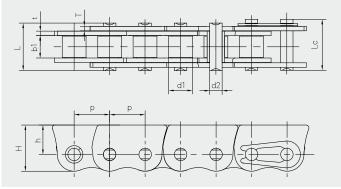
ROTATORISCH, TRANSLATORISCH

- Schubketten können die Funktionsweise von Linearantrieben übernehmen. Ein endloser umlaufender Kettentrieb wird somit nicht mehr benötigt.
- Die Seitenbogen- und Rückenbogenfähigkeit von Schubketten ist individuell einstellbar und bietet zahlreiche Lösungsmöglichkeiten.
- Die extrem kompakte Bauweise ist ein weiteres Plus und kann bis zu 60 % Bauraum einsparen – ein erheblicher Kostenfaktor.

ANWENDUNGSBRANCHEN

- Allgemeiner Maschinenbau
- Medizintechnik
- Fahrzeugtechnik
- Transportsysteme
- Gebäudetechnik
- Werkzeugmaschinen
- Ergonomische Arbeitsplätze und Möbel





ⁱⁿ is 828 (9)	Sun Sunia	Rollen O	Lichte Weite	80/5° 90 60 60 60 60 60 60 60 60 60 60 60 60 60	L'max (mm)	Bolzenlä		L /	essungen aschen	Max Onucker	Brichkaff min. F. Aff	Gewicht 9 (Reph)
Schubketter	1											
G52 RS ¹⁾	8,00	5,00	3,16	2,31	10,1	11,2	7,1	3,6	0,8	0,9	3,0	0,27
G67 RS ¹⁾	9,525	6,35	5,72	3,31	15,7	16,9	8,2	4,1	1,2	1,8	6,5	0,55
08AF6	12,70	7,92	7,90	3,98	17,2	19,2	17,1	11,0	1,5	3,5	13,0	1,02
L85 RS ¹⁾	12,70	8,51	7,75	4,45	19,8	21,4	11,8	5,9	1,7/1,5	3,8	13,0	0,93
M106 RS 1)	15,875	10,16	9,65	5,08	22,8	24,2	14,4	7,2	1,7/1,6	5,7	16,0	1,56
M128 ARS	19,05	11,91	12,60	5,96	30,0	31,4	18,0	9,0	2,4	10,2	25,0	1,96
M1610 ARS	25,40	15,88	15,88	7,92	39,0	40,9	23,0	11,5	3,2/3,0	18,5	40,0	3,56

 $^{^{1)}}$ Die Innengliedabmessungen der Schubketten entsprechen ISO 606. Kleinstes Kettenrad: 10 Zähne $^{2)}$ Die max. Druckkraft ist abhängig von der Kettenlänge und den Antriebsparametern.

ᠫ₩ɪ͡s Plattenketten

Für besonders enge Kurven

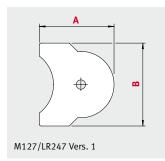
PROBLEM/AUSGANGSLAGE

Sicheres und ruhiges Transportieren und Speichern von Werkstücken und Werkstückträgern durch engste Kurvenbahnen und -radien.

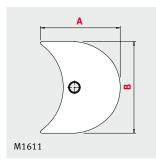
UNSERE LÖSUNG

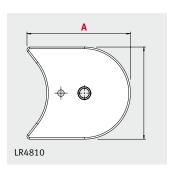
Plattenketten der Marke JWIS mit Spezialplatten direkt auf den Kettenbolzen aufgepresst, gewährleisten eine ebene und stufenfreie Transportbahn auf engstem Raum.

HIGHLIGHTS


- Das iwis-Plattenkettenprogramm beinhaltet Rollenketten nach ISO 606 (DIN 8187), ISO 1275 (DIN 8181) sowie nach Werksnorm
- Gewährleistung einer absolut ebenen und stufenfreien Transportbahn
- Geräuscharm
- Große Vielfalt an Plattenformen ermöglichen die individuelle Gestaltung des Transportsystems
- Verschiedene Plattenmaterial-Alternativen auf Anfrage

- Gute Abdichtung des Funktionsbereichs der Kette
- Glattflächige Auflage der Werkstücke durch ineinander greifende Form der Platten
- Durch die speziell gestaltete Plattenform sind engste Kurvenradien möglich
- Lange Förderstrecken auf kleinstem
- Keine Verletzungsgefahr
- Verwendung von DIN-Kettenrädern
- CAD-Daten aller Plattenkettentypen verfügbar


ANWENDUNGSBRANCHEN

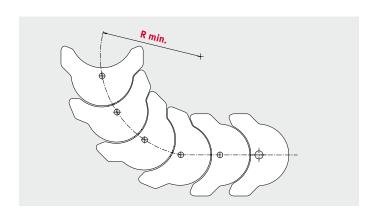

- Fördertechnik
- Getränkeindustrie
- Automobilindustrie
- Allgemeiner Maschinenbau
- Verpackungs- und Lebensmittelindustrie
- Medizintechnik und pharmazeutische Industrie
- Maschinenverkettungen und Automation
- Speicher- und Pufferanlagen
- Werkzeugtransport
- Unterflurketten

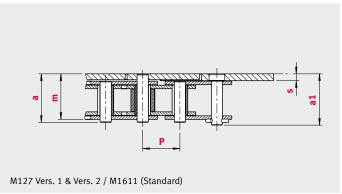
EINIGE PLATTENVARIANTEN

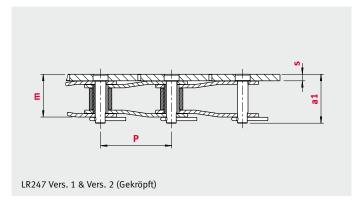
HIGHLIGHTS

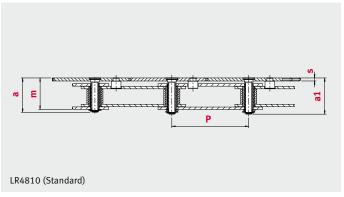
- Große Vielfalt an Plattenformen ermöglichen die individuelle Gestaltung des Transportsystems
- 2 Verschiedene Plattenmaterial-Alternativen auf Anfrage

Beispiel


Spezialförderketten


KNOW-HOW/ENGINEERING


Auf Wunsch entwickelt iwis kundenspezifische Lösungen für Transportsysteme. Unsere Konstruktionsingenieure unterstützen bei der Auslegung, Berechnung und Entwicklung neuer Förderanlagen.


Nehmen Sie Kontakt mit uns auf!

ত্র্পার Transferketten nach ISO 606

Verschleißfest und hochbeständig

HERAUSFORDERUNG

Offene Transportsysteme sind anfällig gegen Fremdkörper und Kleinteile, die zu Betriebsstörungen oder Beschädigung des Fördergutes führen können.

UNSERE LÖSUNG

Völlig geschlossene Transferketten (TF-Ketten) mit verschleißfesten und hochbeständigen Kunststofftragbügeln in drei Ausführungen verhindern Beeinträchtigungen. Exklusiv von iwis.

TECHNISCHE MERKMALE

HIGHLIGHTS

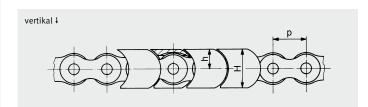
- Vollständige Abdichtung des Funktionsbereichs der Kette: Die Bügel umschließen die Kette auch im Umlenkbereich auf drei Seiten
- Verschiedene Grundketten verfügbar, z. B. MEGAlife, vernickelt oder korrosionsbeständig
- Schonender Transport von empfindlichem Fördergut
- Passgenaue Abdeckung verhindert Verletzungsgefahr und Betriebsstörungen
- Kette äußerlich vollkommen sauber; dadurch keine Staubbindung
- Die Grundkette bleibt selbst bei ungünstigen Betriebsbedingungen sauber
- In horizontalen und vertikalen Einbaulagen einsetzbar
- Kein Anheben der Last in der Umlenkung

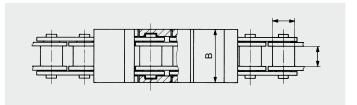
Kettenauslegung

Je nach Transportsituation werden für die Ermittlung der Kettenzugkraft Reibwerte von 0,1 bis 0,3 angenommen. Die Reibwerte beziehen sich auf den Kontakt zwischen Kette und Führung. Die Berechnung der Basiskette erfolgt nach den im iwis-Handbuch Kettentechnik aufgeführten Beispielen oder über das iwis-Kettenberechnungsprogramm, welches Sie über unsere Website beziehen können.

Hinweis: TF-Ketten sind unvernietet!

Bei detaillierten Fragen zur Auslegung sowie zu CAD-Daten unterstützt Sie iwis selbstverständlich. Bitte wenden Sie sich dazu an uns.


ANWENDUNGSBRANCHEN


- Allgemeiner Maschinenbau
- Transport- und Lagertechnik
- Verpackungs- und Lebensmittelindustrie
- Elektronikindustrie und Leiterplattenfertigung
- Elektro- und Haushaltsgeräte
- Medizintechnik und pharmazeutische Industrie
- Holz-, Glas- und Keramikverarbeitung
- Chemie- und Verfahrenstechnik
- Druck- und Papierindustrie
 und überall dort, wo es auf schonenden Transport ankommt.

Die Kette eignet sich besonders gut für maschinell bearbeitete Werkstücke – auch mit empfindlicher Oberfläche.

MOSINIO	.: hws. Bes.	Srunckette	Selling & D	Bruch, agr.,	In ore Breite	$A_{OHe}^{(nn)} = A_{OH}^{(nn)}$	Breife (mm)	\ *\ *-	Tragbügel	(mm) mitte max. Belastun Fonstspestun	24. Fischen.	Ketten (Ketten) Sertifel	Max Abzusskar 11. inis/85/195/197	, (N),
08 B-1	L85 TF	L85 SL	12,7	22.000	7,75	8,51	19,85	15,5	8,1	137	0,45	0,84	200	
10 B-1	M106 TF	M106 SL	15,875	27.000	9,65	10,16	25,0	17,6	9,7	195	0,45	1,18	300	
12 B-1	M127 TF	M127 SL	19,05	32.700	11,75	12,07	29,8	19,9	11,3	265	0,45	1,59	620	

*Der Zusatz SL (Super Longlife) kennzeichnet Grundketten mit besonders verschleißfesten Bolzen

EIGENSCHAFTEN TRAGBÜGEL

iwis bietet Ihnen drei Tragbügel-Varianten an. Alle Temperaturangaben gehen von max. 0,45 MPa Flächenpressung aus; bei geringerer Flächenpressung deutlich höhere Temperatureinsatzbereiche möglich nach Rücksprache mit iwis.

Für Sonderanwendungen mit z. B. Steigung, Staubetrieb oder aggressiven Medien sind Materialkonfigurationen möglich. In diesen Fällen kontaktieren Sie bitte iwis für eine individuelle Beratung.

1. Standardanwendungen

Farbe:	weiß
Wasseraufnahme nach ASTM D570:	0,22%
Rockwellhärte nach M-Skala ASTM D785:	80
Oberflächenwiderstand nach ASTM D257:	> 1,0E + 15Ω
Max. Temperatur kurzzeitig:	140 °C
Max. Temperatur dauernd:	100 °C
Min. Temperatur:	-50 °C

2. Hitzebeständige Anwendungen

Farbe:	weiß
Wasseraufnahme nach ISO 62 bei Normalklima:	0,25%
Kugeldruckhärte nach ISO 2039-1:	130 MPa
Oberflächenwiderstand nach IEC 60093:	> 1,0E + 15Ω
Max. Temperatur kurzzeitig:	150 °C
Max. Temperatur dauernd:	140 °C
Min. Temperatur:	-50 °C

3. Anti-statische Anwendungen

Farbe:	weiß
Wasseraufnahme nach ISO 62 bei Normalklima:	9%
Oberflächenwiderstand nach IEC 60093:	6,8E + 12Ω
Max. Temperatur kurzzeitig:	130 °C
Max. Temperatur dauernd:	90 °C
Min. Temperatur:	-40 °C

MATERIALZULASSUNGEN

Material	Standard	Hoch- temperatur	Anti- statisch
FDA-Zulassung 1)	/	/	×
Silikon-Freiheit ²⁾	/	✓	✓
LABS-Freiheit 2)	/	*	*
RoHS-Konformität	✓	✓	*
REACH-Konformität	/	*	/

¹⁾ Für Lebensmittelkontakt ²⁾ Lackbenetzungsstörende Substanzen *Details zu LABS, RoHS und REACH erhalten Sie von Ihrem iwis-Ansprechpartner.

<u> ব্যুখ্য</u> Transferketten nach ISO 606

Verschleißfest und hochbeständig

KETTENFÜHRUNG

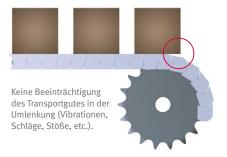
Wir empfehlen für iwis-Transferketten T-förmige Kettenführungen, auf der die Kettenrollen aufliegen bzw. abrollen können (horizontaler Einbau). Bei vertikalem Einbau können stegfreie Kettenführungen verwendet werden.

VERBINDUNGSGLIED

Die Kettenenden werden mit einem Stiftbock 1 verbunden, auf den eine lose Stecklasche 2 aufgeschoben wird. Durch geeignetes Abknicken der Kette lassen sich die zwei Tragbügel 3 über den Kettenbolzen aufclipsen. Eine Verschlussfeder wird nicht benötigt. Um das Auffinden des Verbindungsgliedes zu erleichtern, sind die zwei betreffenden Tragbügel schwarz eingefärbt.

Verbindungsglied: gleiche Abmessungen wie Kette

KORROSIONSBESTÄNDIGKEIT

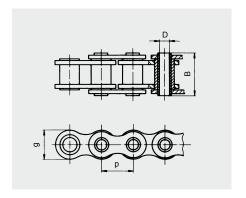

Für Transferketten können als Basisketten auch die korrosionsbeständigen CR-Ketten, vernickelte Ketten oder die wartungsarmen MEGAlife-Ketten mit höchster Lebensdauer eingesetzt werden. Weitere Informationen zu diesen Ketten können Sie dem Katalog "JWIS Präzisionskettensysteme für Antriebsund Förderzwecke" entnehmen.

KETTENSCHMIERUNG

Der richtig ausgewählte Schmierstoff und das passende Schmierverfahren gewährleisten gute Verschleißminderung, ausreichenden Korrosionsschutz und optimale Dämpfeigenschaften. Je nach Anwendungsfall kann die Basiskette mit einem der iwis-Erstschmierstoffe geschmiert werden. Einen Überblick entnehmen Sie bitte dem iwis-Gesamtkatalog "JWIS Präzisionskettensysteme für Antriebsund Förderzwecke".

KETTENRÄDER

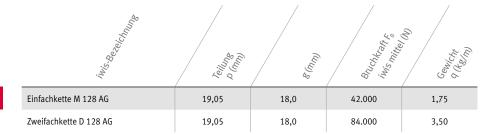
Für TF-Ketten können Standardkettenräder nach DIN 8187 verwendet werden. Bei Kettenrädern mit z > 18 ist die TF-Kette auch im Umlenkbereich vollständig geschlossen und die Grundkette gegenüber dem Eindringen von Fremdkörpern geschützt.

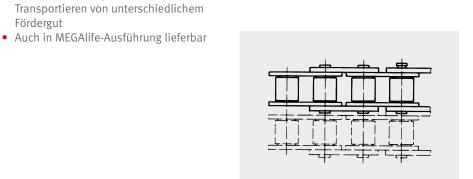


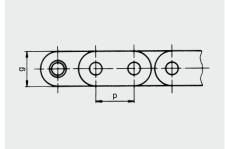
TWIS Hohlbolzenketten

Einfache Befestigung von Anbauteilen und Querstreben

 $^{^{\}mbox{\tiny 1)}}$ Bruchkraft ohne eingesteckte Stifte 34.500 N


Sonderhülsenkette gemäß Rollenkette 3/4 x 1/2" nach DIN ISO 606 (DIN 8188). Anordnung der Hohlbolzen in beliebigen Abständen möglich.


HIGHLIGHTS


Fördergut

TWIS Palettentransportketten

Nicht aufgeführte Maße und Werte entsprechen den iwis Ketten M 128 A SL bzw. D 128 A nach DIN ISO 606 (DIN 8188).

Seitenbogenketten

Durch gerade Laschenform durchgehen-

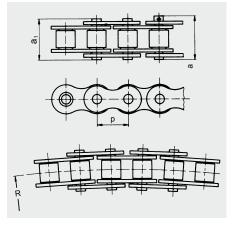
Rollenketten mit geraden Laschen zum

de Auflage des Transportgutes

Transportieren, Fördern und Ziehen auf kurvenförmigen Bahnen

PROBLEM/AUSGANGSLAGE

- Transportieren und Fördern auf kurvenförmigen Bahnen
- Kettenverwindung bei Schrägstellung der Wellen zueinander
- Veränderung der Lage des Transportgutes z.B. von horizontal in vertikal

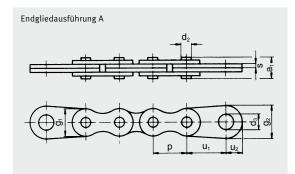

UNSERE LÖSUNG

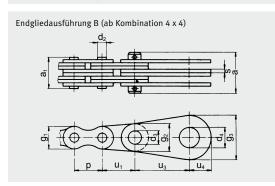
iwis-Hochleistungsketten mit speziell ausgeführtem Kettengelenk.

Exklusiv von iwis.

HIGHLIGHTS

- Statt Linienberührung flächige Anlage des Kettengelenkes im Kurvenbereich
- Durch symmetrisch konische Bolzen sehr enge Kurvenradien möglich
- Durch Verwendung von iwis-Mitnehmerund Winkellaschen als Förderketten universell einsetzbar

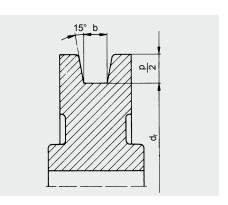

iwis Beechnung	Tellings D		/	reite	Buchkak.	Side to the second seco	Max. zu Kettenz	ugkraft	1.19(2) 1.19(2
L 85 A-SB	12,7	16,8	17,8	425	10.000	600	1.500	0,65	2, 4, 8
M 106 A-SB	15,875	21,0	22,3	500	18.000	900	2.500	1,00	2, 4, 8
M 128 A-SB	19,05	26,3	27,7	750	26.000	1200	3.700	1,50	2, 4, 8


Nicht aufgeführte Maße und Werte entsprechen den iwis Ketten L 85 A. M 106 A und M 128 A SL.

Typerketten Stranger

Imis Beelin	Sunuus	/ /	eilung (i) o o o o o o o o o o o o o o o o o o o	tombii	Anc	Bruchkapp.	66/2 (M)*	Sew.	80/2016 (RS/m)	g (mm) rchmesser	Bre	eite auß	Sen diphones (485)	mendiches (m.)	/	(Miller) 45°	/ ,	(William)	bmess	ungen	(WW) * 1
Flyerketter																					
FL 522	-	8,0	800,0	2 x 2	=	5.000	0,05	0,15	2,31	5,6	-	6,3	1,0	6,2	-	16,0	-	15,0	10,0	-	-
FL 523	-	8,0	800,0	2 x 3	=	7.000	0,05	0,19	2,31	6,7	-	6,3	1,0	6,2	-	16,0	-	15,0	10,0	-	-
FL 623 1)	3/8	9,525	945,0	2 x 3	#≡	10.000	0,08	0,32	3,31	8,3	-	8,1	1,2	6,2	-	16,0	_	15,0	10,0	_	_
FL 623 b 1)	3/8	9,525	944,0	2 x 3	=	20.000	0,20	0,46	3,31	10,9	-	8,2	2,0	6,2	-	-	-	-	-	-	_
FL 823 b	1/2	12,70	1268,0	2 x 3	=	28.000	0,18	0,65	4,45	12,4	-	10,8	2,0	8,2	-	18,0	_	20,0	11,0	_	-
FL 834 a	1/2	12,70	1268,0	3 x 4	#	21.000	0,17	0,42	3,68	13,1	-	9,1	1,5	8,2	-	18,0	-	20,0	11,0	-	_
FL 834 b	1/2	12,70	1268,0	3 x 4	#	42.000	0,27	0,91	4,45	16,5	-	10,8	2,0	8,2	-	18,0	_	20,0	11,0	-	_
FL 845 a	1/2	12,70	1268,0	4 x 5	#	34.000	0,24	0,67	3,68	16,9	25	9,1	1,6	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 845 b	1/2	12,70	1268,0	4 x 5	丰	52.000	0,32	1,00	4,45	19,0	25	10,8	1,8	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 866 a	1/2	12,70	1268,0	6 x 6	重	44.000	0,36	0,88	3,68	21,7	28	9,1	1,6	8,2	12,2	18,0	25,0	20,0	11,0	30,0	15,0
FL 866 bd	1/2	12,70	1268,0	3 x 3 ²⁾	重	62.000	0,40	1,17	4,45	20,6	28	10,8	1,5	8,2	-	18,0	-	20,0	11,0	-	_
FL 1044 bd	5/8	15,875	1587,5	2 x 2 ²⁾		57.000	0,37	1,12	5,08	16,8	28	13,7	1,8	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1066 bd	5/8	15,875	1587,5	3 x 3 ²⁾	畫	86.000	0,55	1,68	5,08	24,0	35	13,7	1,8	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1266 bd	3/4	19,05	1898,0	3 x 3 ²⁾	重	115.000	0,76	2,18	5,72	30,0	40	14,9	2,2	10,4	16,2	20,0	35,0	25,0	12,0	45,0	21,0
FL 1644 d	1	25,40	2530,5	2 x 2 ²⁾	垂	157.000	1,00	2,92	8,28	28,0	40	20,8	3,0	12,2	18,2	25,0	40,0	30,0	15,0	50,0	24,0
FL 1666 d	1	25,40	2530,5	3 x 3 ²⁾	重	231.000	1,50	4,35	8,28	41,0	50	20,8	3,0	12,2	18,2	25,0	40,0	30,0	15,0	50,0	24,0

¹⁾ Laschenform gerade ²⁾ doppelt *iwis-Werksnorm



iwis-Flyerketten

(Werksnorm) werden aus Präzisions-Kettenteilen nach ISO 606 (DIN 8187) hergestellt. Die tatsächliche Teilung kann deshalb von der Nennteilung abweichen. Nutzen Sie bitte für die Längenkalkulation die tatsächliche Länge von 100 x Teilung, statt der Nennteilung.

Sonderausführungen und Kombinationen mit Rollenketten auf Anfrage lieferbar.

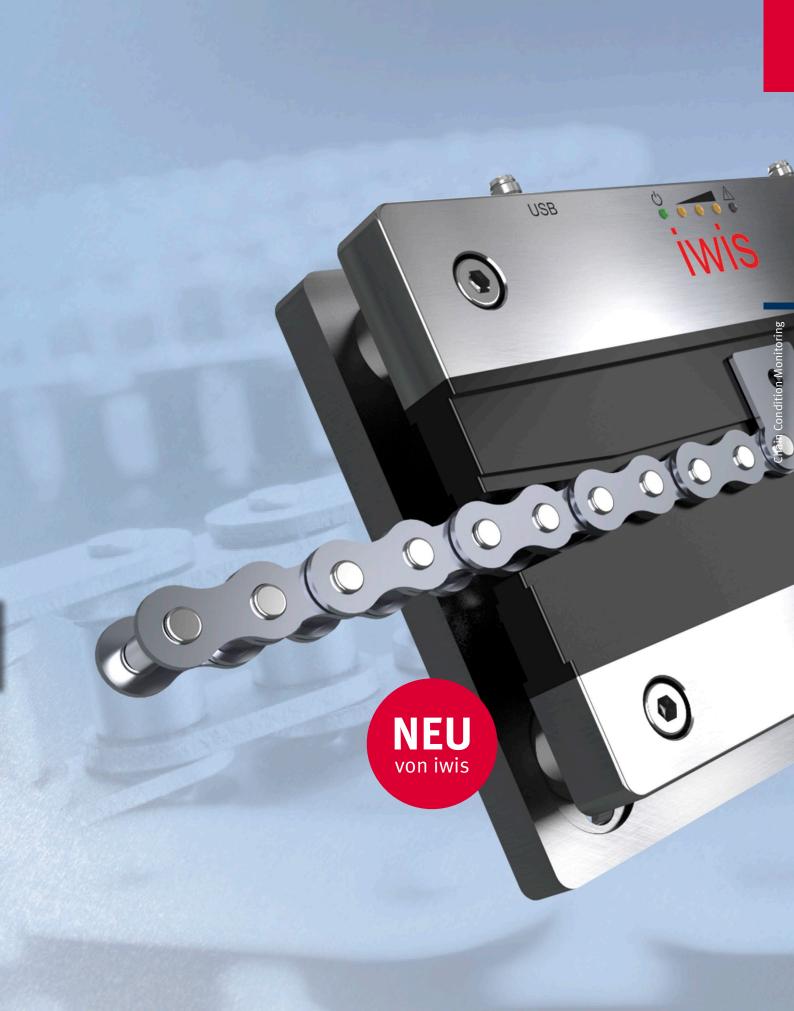
Die Dimensionierung sollte mit mindestens 10facher Sicherheit vorgesehen werden, je nach Beanspruchung durch leichte oder kräftige Stöße und unter Berücksichtigung einschlägiger behördlicher Vorschriften.

Beispiel für die Ausführung einer Umlenkrolle

Innere Rollenbreite:

 $b = a_1 \cdot 1,15$

Mindest-Fußkreisdurchmesser:


$$d_{fmin} = p \cdot 5$$

Nach Möglichkeit größere Durchmesser vorsehen.

CM Chain Condition Monitoring

Das neue iwis-Kettenlängungs-Überwachungssystem CCM (Chain Condition Monitoring) misst die Verschleißlängung von Ketten im Einsatz und warnt das Instandhaltungspersonal rechtzeitig, wann die Kette aufgrund der Verschleißlängung ausgetauscht werden muss.

Chain Condition Monitoring (CCM)

Das Kettenlängungs-Überwachungssystem

INTELLIGENTE KETTENÜBERWACHUNG

- Das Instandhaltungspersonal kann rechtzeitig (re)agieren!
- Keine langen Stillstandszeiten von Anlagen und Maschinen
- Keine Gefährdung von zugesagten Lieferzeiten keine Unterbrechung der Logistikkette
- Vermeidung von finanziellen Verlusten durch Produktionsausfälle
- Überwachung präziser Kettenanwendungen
- System nach dem Prinzip "Plug-and-play" es muss keine Kalibrierung o. Ä. vorgenommen werden
- ✓ Einfacher Baukastenaufbau
- √ Überarbeitetes Design

HIGHLIGHTS

- Der Verschleißzustand lässt sich von der LED-Anzeige in Feinabstufungen (Ausgabe in 0,5 %-Schritten) ablesen.
- Messergebnisse können via USB auf den Rechner übertragen und in einem speziellen Interface dargestellt werden.
- Unterschiedliche Geschwindigkeitsbereiche und wechselnde Belastungsrichtungen stellen für das CCM kein Problem dar.
- Das Einsatzgebiet beschränkt sich nicht auf wenige Kettengrößen: Das CCM kann sowohl für Simplex- als auch für Duplex- und Triplex-Ketten verwendet werden, da jeweils nur ein Strang der Kette detektiert wird.
- Eine präzise Messung findet kontaktlos und ohne direkten Eingriff in den Kettenantrieb statt.
- Das CCM kann schnell und einfach auch nachträglich ohne Einsatz von Sonderanbauteilen – an den Ketten in zahlreiche Kettenanwendungen integriert werden.

PRODUKTPROGRAMM

Bezeichnung	Artikel-Nr.
CCM-06B-IWIS	40008846
CCM-08B-IWIS	40008847
CCM-08A-IWIS	40008897
CCM-10B-IWIS	40008850
CCM-10A-IWIS	40008898
CCM-12B-IWIS	40008851
CCM-12A-IWIS	40008899
CCM-16B-IWIS	40008853
CCM-16A-IWIS	40008900
CCM-20B-IWIS	40008854

50 mm *

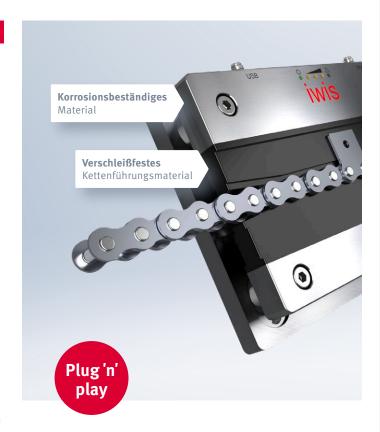
EINSATZBEDINGUNGEN

- Normale industrielle Umgebungsbedingungen
 - Für stark oder hoch abrasive Anwendungen ist das CCM-System speziell auszuführen!
- Einsatztemperaturbereich: 0 °C bis 70 °C
- Bei Ketten mit beidseitigen Anbauteilen oder verlängerten Bolzen muss eine gesonderte Prüfung durch iwis erfolgen.
- Schutzart: IP67
- Unempfindlich gegenüber nicht-magnetischen Verschmutzungen
- Bei Anbau an Kundenschnittstelle empfehlen wir, Dämpfungselemente vorzusehen (z.B. zwischen Gehäuse und Montageplatte)
- Einbau des CCM-Systems im Lasttrum empfohlen; Einbau im Leertrum ebenfalls möglich
- USB-Verbindung zum PC-Interface
 - Anschluss über USB-Stecker 2.0 Typ A
- Externe Stromversorgung (24 V DC ± 20 %)
 - Anschluss über offene Kabelenden an Kabelklemme

CCM-KOMPLETTLÖSUNG

- Lieferumfang bestehend aus:
 - CCM-System inklusive Montageplatte
 - Stromversorgungskabel
 - USB-Kabel
 - PC-Software
 - Montage- und Betriebsanleitung
- 3D-Daten vorhanden und auf Anfrage verfügbar
- Montagesatz standardmäßig auf Tiefe T = 50 mm voreingestellt (Tiefe T * ist abhängig von der Kettenausführung und individuell abstimmbar)
- Informationen zu elektrischen und mechanischen Anschlüssen sind in der Betriebsanleitung zu finden.

BAUFORMEN


Kettengröße	Kettengeschwindigkeiten
06B	0,10 - 4,80 m/s
08B / 08A	0,15 - 6,35 m/s
10B / 10A	0,15 - 7,90 m/s
12B / 12A	0,20 - 9,50 m/s
16B / 16A	0,25 - 12,50 m/s
20B	0,35 - 15,50 m/s

Geringere bzw. höhere Geschwindigkeiten auf Anfrage.

HINWEIS Das CCM System übernimmt ausschließlich eine informative Funktion – einen Schutz vor Ausfällen von Kettentrieben und Maschinenausfällen bietet das System ausdrücklich nicht. Das CCM System gibt auch keine Wahrscheinlichkeiten künftiger Kettenlängungen an.

Dem Kunden ist bekannt, dass das CCM System auf einen Kettenlängungswert von 3% Längung als Referenzwert voreingestellt ist. Dieser Referenzwert wurde von iwis ohne Berücksichtigung konkreter Anwendungen voreingestellt. Der Kunde wird den Referenzwert selbst definieren und in eigener Verantwortung hierbei prüfen, ob der Referenzwert im Anwendungsfall unkritisch ist oder zu kritischen Situationen oder Schadensfolgen aufgrund unzulässiger Kettenlängungen führen kann.

iwis wird auf Wunsch und gegen Aufpreis den voreingestellten Referenzwert von 3% auf einen vom Kunden vorzugebenden anderen Wert einstellen, der Kunde kann den für seine Anwendung geeigneten Wert jedoch auch selbst über die mitgelieferte Software einstellen.

Syvis® Kettenräder

Die Form der Kettenräder wird durch die Kettengröße, die Zähnezahl, das zu übertragende Moment und die Anwendung bestimmt. Man unterscheidet zwischen Kettenrädern und Kettenradscheiben für Rollenketten nach Norm (zum Beispiel DIN ISO 606 (DIN 8187/DIN 8188)) und solchen in Sonderausführungen. Kettenräder mit Nabe gestatten die Übertragung eines größeren Drehmomentes auf die Welle, während Kettenradscheiben nur dann eingesetzt werden können, wenn kleine Momente zu übertragen sind. Eine genaue Darstellung der Kettenradkonstruktion finden Sie im iwis-Kettenhandbuch.

TVVIS Kettenräder und Kettenradscheiben

nach ISO 606 (DIN 8187)

KETTENRAD	SCHEIBE	EN UND	KETTENI	RÄDER
04	•	-	-	Das
				2 43

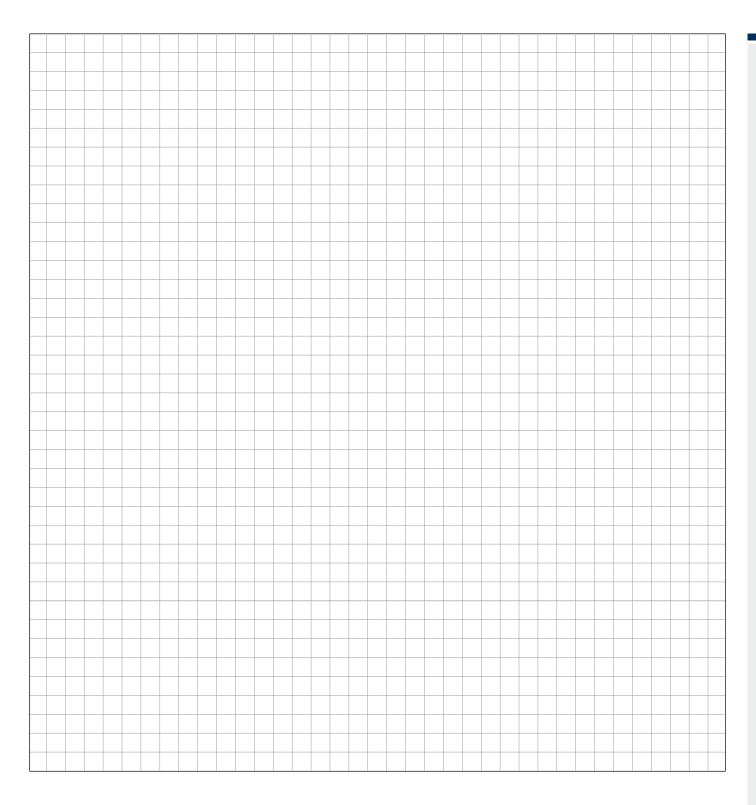
04	•	-	-
05 B	•	•	-
06 B	•	•	•
08 B	•	•	•
10 B	•	•	•
12 B	•	•	•
16 B	•	•	•
20 B	•	•	•
24 B	•	•	•
28 B	•	•	•
32 B	•	•	•

Das iwis-Kettenrad- und Kettenradscheibenprogramm wird direkt durch unsere Schwesterfirma iwis antriebssysteme GmbH aus Wilnsdorf geliefert.

Eine Übersicht über das komplette Produktprogramm entnehmen Sie bitte dem Katalog "Kettenräder und Antriebskomponenten".

WEITERES PRODUKTPROGRAMM

- Konus-Klemmbuchse für Kettenräder
- Kettenspannräder komplett mit Kugellager - einbaufertig
- Kettenräder für Konus-Klemmbuchse
- Rutschnaben Serie DA
- Rutschnaben Serie FT


- Rutschkupplungen Serie FT
- Wellen-Verbindung durch Ketten-Kupplung

SONDER-KETTENRÄDER IN VIELFÄLTIGEN AUSFÜHRUNGEN

- Fertigen von Passfedernuten nach DIN 6885/1 von Nutenbreite 3 P9/JS9 - 25 P9/JS9, verschiedene Sondergrößen sind auf Anfrage möglich
- Konventionelle Innenbearbeitung von Kettenrädern und Drehteilen mit Außendurchmesser bis zu max. 620 mm und bis zu einer Drehlänge von 500 mm
- Einpressen von Kugellagern in zeichnungsrelevante Bauteile sowie die Herstellung von Kettenspannrädern auf mit Sondervorrichtungen versehenen hydraulischen Pressen
- Um die Lebensdauer der Materialien zu verlängern, ist eine induktive Wärmebehandlung der Zahngeometrie nach Kundenwunsch möglich
- Oberflächenbehandlungen wie z.B. Verzinken, Schwarzoxidieren oder Vernickeln
- Kettenräder mit hohen Toleranzanforderungen
- Teilkreis- und Gewindebohrungen
- Fertigung mechanisch bearbeiteter Teile beliebiger Geometrie bis 350 mm Durchmesser oder max. Abmessungen 1.050 mm x 560 mm x 460 mm

Kettenräder

Notizen

Werkzeuge

JVVIS Werkzeugsatz

für den Werkstattgebrauch

Zum Trennen und Vernieten von Rollenketten nach ISO 606 (DIN 8187/ DIN 8188) und Werksnorm der Größen 8 mm bis 1 1/2". Amboss (A) und Gabel (A 1) dienen zum Zerlegen von Ketten mit abgesetzten Bolzen.

Für das Zerlegen von Ketten mit glatten Bolzen werden die Nietplatte (D 1) und der Durchschlag (B) benötigt.

Zum Vernieten von Ketten beider Bolzenarten werden die Nietplatte (D 1) mit Einsätzen und Buchsen sowie der Nieter (E) und Laschendrücker (C) benötigt.

Anwendung

Zerlegen und Zusammenbauen von Ketten

ZERLEGEN (GLATTE BOLZEN)

Kettenglied mit glattem Bolzen

Man steckt den vorstehenden Bolzen in die entsprechende Büchse der Nietplatte und schlägt ihn mit dem Hammer so weit hinein, bis er nicht mehr übersteht. Mit einem Durchschlag wird dann der Bolzen ganz ausgeschlagen 1.

Bei schweren Ketten (über 3/4") ist es vorteilhaft, den Nietkopf vorher abzuschleifen.

ZERLEGEN (ABGESETZTE BOLZEN)

Die Kette wird bis zum Anschlag der beiden benachbarten Rollen in die Gabel geschoben. Dann legt man die Gabel mit der Kette auf den Amboss und schlägt die Bolzen mit einem Hammer so weit hinein, bis sie nicht mehr überstehen. Mit dem Durchschlag (B) werden nun die Bolzen ganz hinausgeschlagen ②. Mehrfachketten werden auf die gleiche Art zerlegt, jedoch ist zu beachten, dass die Gabel in den unteren Kettenstrang eingeschoben wird.

ZUSAMMENBAU

Die Verfahrensweise ist bei Ketten mit abgesetzten Bolzen die gleiche, wie bei Ketten mit glatten Bolzen. Man steckt einen neuen Stiftbock in die zwei Kettenenden, legt die Kette auf das Einsatzstück der Nietplatte und drückt eine neue Außenlasche auf die Nietenden des Stiftbocks 3.

Der Laschendrücker wird über den Nietkopf gesetzt und die Lasche wird so weit nachgeschlagen, dass die Kettenglieder immer noch leicht beweglich sind 4.

Mit dem Nieter (E) wird die Kette nun vernietet **5**.

SWIS Bolzenziehmaschine

Gebrauchsanweisung für die iwis-Bolzenziehmaschine

BOLZENZIEHMASCHINE

Die Bolzenziehmaschine kann in einen Schraubstock eingespannt oder auf der Werkbank festgeschraubt werden. Die Anordnung an der vorderen Tischkante sichert den vollen Schwenkbereich des Handhebles. Auflageflächen links und rechts erleichtern die Handhabung beim Einlegen längerer Ketten.

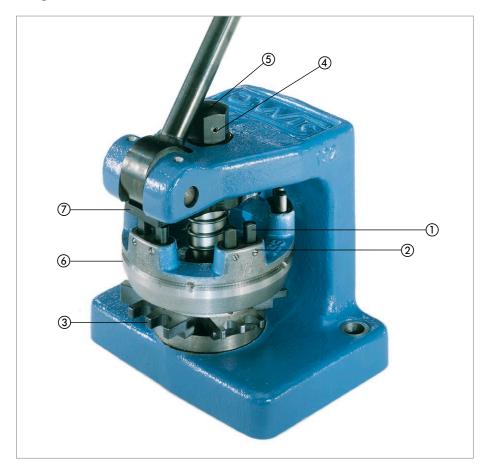
In dem drehbaren Werkzeugteller befinden sich fünf Ausdrück-Werkzeugsätze, die mit den Kettengrößen gekennzeichnet sind. Richtig eingestellt lassen sich folgende iwis-Ketten zerlegen.

Dabei wird unterschieden zwischen:

- Kette mit abgesetzten Bolzen
- Kette mit glatten Bolzen

BESTELL-NR. 4500

AUSWECHSELN DER DRUCKSTIFTE UND DER AUFLAGEGABELN


Druckstifte 1:

Madenschrauben 2 lockern, Stifte nach oben herausziehen. Stifte satzweise auswechseln.

Auflagegabeln 3:

Obenliegende Mutter 4 lösen, vorher Sicherungs-Spannstift herausschlagen. Mittelbolzen 5 nach unten ausdrücken und Werkzeugteller 6 nach vorne herausnehmen.

Die zwei Spannstifte der betreffenden Auflage herausschlagen und neue Gabel einlegen. Beim Zusammenbau auf die richtige Lage der Druckplatte ② und des Rasterstiftes an der Rückseite des Gusskörpers achten. Mutter ③ fest anziehen und mit Spannstift sichern

SWIS Bolzenziehmaschine

Gebrauchsanweisung für die iwis-Bolzenziehmaschine

A) KETTE MIT ABGESETZTEN BOLZEN

Bei Ketten mit abgesetzten Bolzen wird mit einem Hebeldruck ein ganzes Außenglied aus der Kette ausgedrückt. Die Ketten werden mit ihren Rollen in die passende Auflagegabel eingeschoben, so dass die zwei Druckstifte auf die Mitte der Nieten eines Außengliedes treffen.

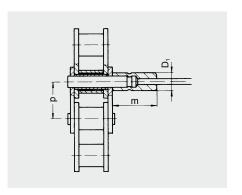
ISO	iwis-Bezeichnung	Teilung Zoll	Einstellung Zoll
06 B - 2	D 67	3/8 x 7/32	3/8
06 B - 3	Tr 67	3/8 x 7/32	3/8
08 B - 1	L 85 SL	1/2 x 5/16	1/2
08 B - 2	D 85 SL	1/2 x 5/16	1/2
08 B - 3	Tr 85	1/2 x 5/16	1/2
10 B - 1	M 106 SL	5/8 x 3/8	5/8
10 B - 2	D 106 SL	5/8 x 3/8	5/8
10 B - 3	Tr 106	5/8 x 3/8	5/8
12 B - 1	M 127 SL	3/4 x 7/16	3/4
12 B - 2	D 127	3/4 x 7/16	3/4
12 B - 3	Tr 127	3/4 x 7/16	3/4

B) KETTE MIT GLATTEN BOLZEN

Voraussetzung für das Teilen von Ketten mit glatten Bolzen ist das Abschleifen der Nietköpfe auf einer Seite des Außengliedes. Danach kann der Stiftbock wie vorher mit nur einem Hebeldruck aus der Kette herausgedrückt werden.

ISO	ANSI-Bezeichnung	iwis-Bezeichnung	Teilung Zoll	Einstellung Zoll
06 B - 1	-	G 67	3/8 x 7/32	3/8
08 A - 1	40-1	L 85 A	1/2 x 5/16	1/2
08 A - 2	40-2	D 85 A	1/2 x 5/16	1/2
08 A - 3	40-3	Tr 85 A	1/2 x 5/16	1/2
10 A - 1	50-1	M 106 A	5/8 x 3/8	5/8
10 A - 2	50-2	D 106 A	5/8 x 3/8	5/8
10 A - 3	50-3	Tr 106 A	5/8 x 3/8	5/8
12 A - 1	60-1	M 128 A SL	3/4 x 1/2	3/4
12 A - 2	60-2	D 128 A	3/4 x 1/2	3/4
12 A - 3	60-3	Tr 128 A	3/4 x 1/2	3/4

Fehlt eine Schleifvorrichtung, können die Nieten mit einem Durchschlag nach Abdrücken einer Außenlasche herausgeschlagen werden. Dabei müssen die Hülsen eine gute Auflage haben, damit sie sich nicht aus den Innenlaschen lösen. Auf diese Weise lassen sich zwar die Ketten zerlegen, es besteht jedoch die Gefahr, dass die Hülsenwand verletzt wird mit der Folge eines höheren Verschleißes. Mit der iwis-Nietenziehmaschine lassen sich auch Förderketten der entsprechenden Abmessungen mit Mitnehmer- oder Winkellaschen zerlegen. Sie ist nicht geeignet für Ketten mit der Größe 3/8 x 5/32".


TWIS Werkzeug für Tuben- und Dosentransport

zum Austausch von Mitnehmerstiften

SPEZIALWERKZEUG

Das unten abgebildete iwis-Spezialwerkzeug dient zur Reparatur von Ketten für Tuben- und Dosentransport. Es ermöglicht den problemlosen Austausch von Mitnehmerstiften in bereits eingebauten Ketten der Typen L 85 SL, M 106 SL, M 127 SL, M 128 ASL und M 128 A-SB (austauschbar).

Kette	Teilung	D ₁	m
L 85 SL	12,7	8,0	22,0
M 106 SL	15,876	8,0	22,0
M 127 SL	19,05	8,0	22,0
M 128 ASL	19,05	10,0	22,0
M 128 A-SB	19,05	10,0	22,0

Zangen zur Reparatur von Tubenketten und Ersatzteilen	Bestellnummer
Montagezange für Adapter 8 mm	40000421
Werkzeug / Einsatz 8 mm zum Montieren	40000424
Werkzeug / Einsatz 8 mm zum Demontieren	40000425
Montagezange für Adapter 10 mm	40002625
Werkzeug / Einsatz 10 mm zum Montieren	40000423
Werkzeug / Einsatz 10 mm zum Demontieren	40000422

Werkzeug

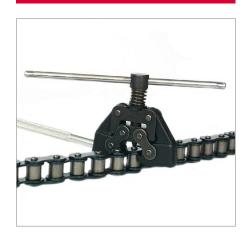
Anwendung

Entfernen und Befestigen eines Adapterstiftes

ENTFERNEN EINES ADAPTERSTIFTES

Der Adapter wird mit der Aufnahme
 gefasst und durch Schließen des
Werkzeuges gesprengt. Vorgang ggf. mit
45° Positionsänderung wiederholen. Der
Adapter ist zerstört, und der Stift kann problemlos entfernt werden.

BEFESTIGEN EINES ADAPTERSTIFTES


Der neue Adapterstift wird auf den verlängerten Kettenbolzen aufgesetzt. Mit der Aufnahme ② wird er gefasst und durch Schließen des Werkzeuges befestigt. Die Kette ist repariert und somit wieder voll funktionsfähig.

<u> ব্যুগ্রে</u> Bolzenzieher und <u>ব্যুগ্রে</u> Montagespanner

UNIVERSAL-BOLZENZIEHER H

EINFACHER BOLZENZIEHER F

MONTAGESPANNER

BESTELL-NR. 4511

Für Ketten mit abgesetzten Bolzen.

Kettengröße:

- 08B-1 / L 85 SL
- 08B-2 / D 85 SL
- 08B-3 / Tr 85
- 10B-1 / M 106 SL
- 10B-2 / D 106 SL
- 10B-3 / Tr 106
- 12B-1 / M 127 SL
- 12B-2 / D 127
- 12B-3 / Tr 127

Die Ketten werden mit der Zange des Werkzeuges am Innenglied gefasst und der Bolzen einzeln durch die Außenlasche gedrückt.

BESTELL-NR. 4516

Für Ketten mit glatten Bolzen.

Kettengröße:

- P83 V
- S 84 V

Die Ketten werden in die Aufnahmestifte eingelegt und der Bolzen einzeln durch beide Außenlaschen gedrückt.

BESTELL-NR. A) 4518 B) 4519

a) Nr. 35 für Ketten von 1/2 bis 3/4"-Teilung b) Nr. 80 für Ketten ab 1"- bis 2"-Teilung

Die maximale Öffnung des Montagespanners beträgt bei a) 50 mm und bei b) 125 mm.

Swis Werkzeuge zum Zerlegen und Vernieten von Rollenketten Übersicht

	Nr.	Art-Nr.
iwis-Bolzenziehmaschine		4500
Ersatzteile für iwis-Bolzenziehmaschine		
Druckplatte	7	9806
Reparaturset für 3/8"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11926
Reparaturset für 1/2"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11927
Reparaturset für 5/8"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11928
Reparaturset für 3/4"-Ketten: Kettenauflage, 2 Druckstifte und Feder		11929
Universal-Bolzenzieher		
Universal-Bolzenzieher H für Ketten von 1/2" bis 3/4"		4511
Ersatzspindel (mit Druckstift)		4512
Druckstift		4513
Einfache Bolzenzieher F Nr. 4 für F82V, S84V, L85A		4516
iwis-Spezialwerkzeug		
Zange zur Reparatur von Ketten für Tuben- und Dosentransport		
Montagezange für Adapter 8 mm		40000421
Werkzeug / Einsatz 8 mm zum Montieren		40000424
Werkzeug / Einsatz 8 mm zum Demontieren		40000425
Montagezange für Adapter 10 mm		40002625
Werkzeug / Einsatz 10 mm zum Montieren		40000423
Werkzeug / Einsatz 10 mm zum Demontieren		40000422
Werkzeug zum Zerlegen von Stauförderketten		40000646
Druckstift		40001734
Werkzeug für Plattenkette		40003392
Montagespanner		
N° 35 ab 3/8" bis 3/4"		4518
N° 80 ab 1"		4519
Weitere Artikel		
Kettenmesslehren		4568
Kettenspray VP 6 Kombi superplus 400 ml (Verpackungseinheit 12 St.)		15701

...FÜR STAUFÖRDERKETTEN

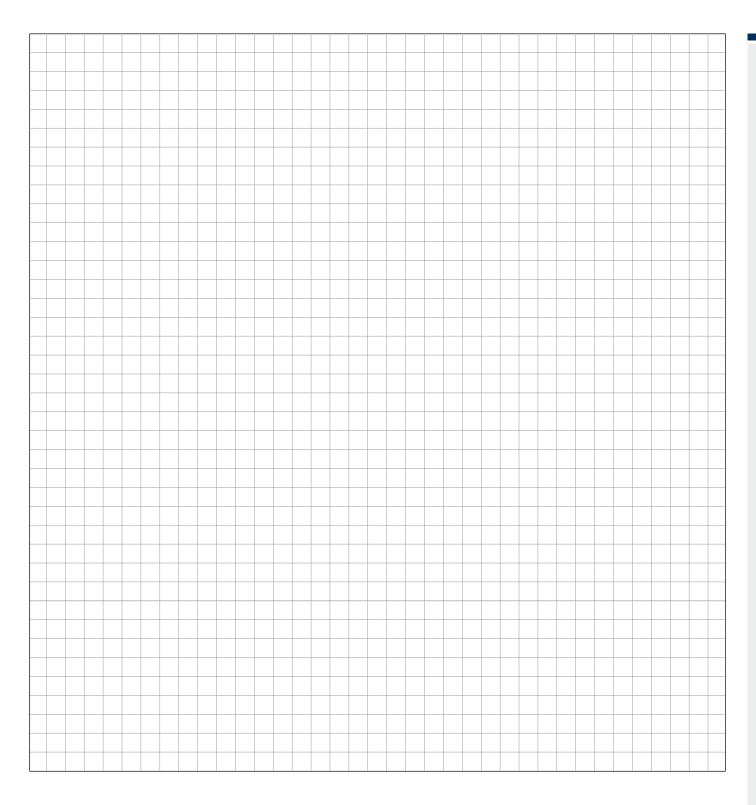
BESTELL-NR. 40000646

Für Stauförderketten M 120 SF und M 127 SF mit Teilung 3/4".

...FÜR PLATTENKETTEN

BESTELL-NR. 40003392

Für Plattenketten M 127 mit Teilung 3/4".


Werkzeuge Übersicht

ISO	Nr.	Art-Nr.
Amboss A		
08 B, 10 B, 12 B	2	5000
06 B	3	5001
16 B	4	5002
20 B	5	5003
Gabel A1	-	
08 B	2	5004
10 B	3	5005
12 B	4	5006
06 B	6	5007
16 B	8	5008
20 B	9	5009
24 B	10	5010
Durchschlag B		
06 B, 08 A	1	5011
08 B	2	5012
10 B	3	5013
05 B	4	5014
20 B, 16 A, 16 B	5	5015
12 A	6	5016
24 B	7	5017
	·	542,
Laschendrücker C		
05 B	1	40006688
06 B	3	40006689
Werksnorm 1/2"	4	40006692
08 A	5	40006691
08 B	6	40006690
10 B	7	40006693
10 A	8	40006694
12 B	9	40006695
12 A	10	40006696
16 A	11	40006705
16 B	12	40006697
20 B	13	40006698
24 B	14	40006699

ISO	Nr.	Art-Nr.
Nietplatte D1		
05 B-16 B, 08 A-16 A	1	5024
20 B, 24 B	2	5025
5.18		
Einsatz D2	1	5026
05 B, 06 B	1	5026
08 A, 08 B, 10 B	2	5027
10 A, 12 A, 12 B	3	5028
16 A, 16 B	4	5029
20 B, 24 A	5	5030
20 A	6	5031
24 B	8	5032
Buchse D3		
05 B, 06 B	1	5033
08 A, 10 A	2	5034
12 A, 16 A	3	5035
24 B	4	5036
-	5	5037
Nictor F		
Nieter E	1	E039
05 B, 06 B	1	5038
08 A, 08 B, 10 B	2	5039
10 A, 12 A, 12 B	3	5040
16 A, 16 B	4	5041
20 B	5	5042
-	6	5043
24 B	7	5044

Werkzeug

Notizen

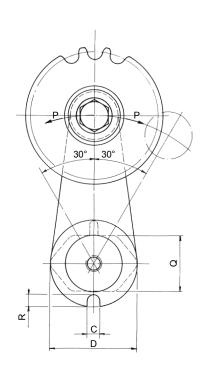
JVIS® Automatische Spanner

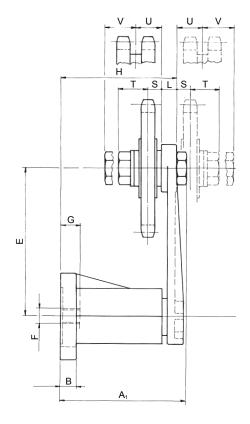
Automatische Kettenspanner kompensieren die Kettenlängung in Maschinen und Förderanlagen und unterstützen so die Lebensdauer der eingesetzten Ketten. iwis-Kettenspanner sind aus hochwertigen Materialien hergestellt. Je nach Anwendung stehen unterschiedliche Typen zur Verfügung.

mit gelagerter Kettenradscheibe

	Teilung x innere Breite	Р	A ± 1	В	С	D	Е	F	G	H ± 1	L	Q	R	S	Т	U	V	Z
Typ RHR																		
RHR 111	3/8" x 7/32"	0÷100	58	6	8	35	80	M6	8,5	51	8	22	5	9,2	19,7	9,7	16,7	21
RHR 155	3/8" x 7/32"	0÷150	71	8	8,5	45	100	M8	10,5	64	8	30	6	9,2	19,7	9,7	16,7	21
RHR 155	1/2" x 5/16"	0÷150	71	8	8,5	45	100	M8	10,5	64	8	30	6	9,2	19,7	12,5	19,5	16
RHR 188	1/2" x 5/16"	0÷300	84	10,5	8,5	58	100	M10	13	78	10	37	8	9,2	19,7	12,5	19,5	16
RHR 188	5/8" x 3/8"	0÷300	85	10,5	8,5	58	100	M10	13	78	10	37	8	9,2	19,7	15,3	23,3	17
RHR 277	3/4" x 7/16"	0÷900	114	15	10,5	78	130	M12	17	107	12	53	10	9,2	19,7	17,7	25,7	15
RHR 277	1" x 17 mm	0÷900	114	15	10,5	78	130	M12	17	107	12	53	10	8,9	19,4	26,4	34,4	12

TYP RHR


Automatische Spanner


- Gutes Dämpfungsverhalten, Schwingungs- / Lärmreduzierung
- Arbeitswinkel > 30° in beiden Drehrichtungen
- Einfache Montage von innen und außen möglich
- Temperaturbereich -40 °C bis +80 °C
- Kompatibel zu ähnlichen Spannersystemen

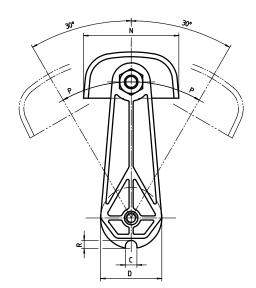
AUFTRAGSBEISPIEL

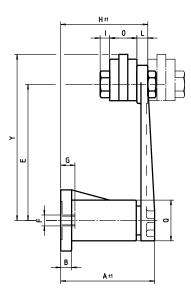
Spanner für Einfach-Kette – Kettenteilung 1/2" - RHR 155 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

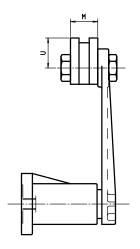
S = Einfach-Kette **D** = Zweifach-Kette

المراحة Typ RHP

mit Polyethylenkopf




	Teilung x innere Breite	Р	A ₁ ± 1	В	С	D	E	F	G	H±1	I	L	M	N	0	Q	R	U	Y
Typ RHP																			
RHP 111	3/8" x 7/32"	0÷100	57	6	8	35	80	M6	8,5	51	7	8	20	70	20	22	5	22	102
RHP 155	3/8" x 7/32"	0÷150	70	8	8,5	45	100	M8	10,5	64	7	8	20	70	20	30	6	22	122
RHP 155	1/2" x 5/16"	0÷150	70	8	8,5	45	100	M8	10,5	64	7	8	20	70	20	30	6	22	122
RHP 188	1/2" x 5/16"	0÷300	84	10,5	8,5	58	100	M10	13	78	7	10	20	70	22	37	8	29	122
RHP 188	5/8" x 3/8"	0÷300	85	10,5	8,5	58	100	M10	13	78	8	10	25	90	22	37	8	29	129
RHP 277	3/4" x 7/16"	0÷900	114	15	10,5	78	130	M12	17	107	8	12	30	90	22	53	10	29	159
RHP 277	1" x 17 mm	0÷900	114	15	10,5	78	130	M12	17	107	8	12	45	110	25	53	10	35	165


AUFTRAGSBEISPIEL

Spanner für Einfach-Kette – Kettenteilung 1/2" – RHP 155 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

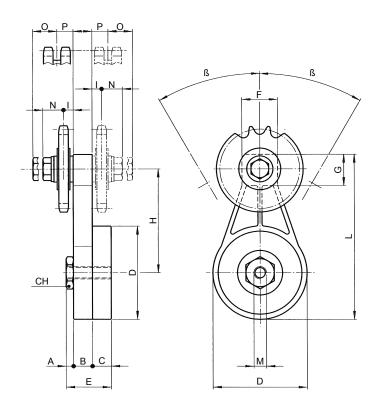
S = Einfach-Kette **D** = Zweifach-Kette

المحتودة کا کمیری Typ TCR

mit gelagerter Kettenradscheibe

		vton max.	Teilung x innere Breite	Z	А	В	С	СН	D	E	F	G	Н	I	L	M	N	0	Р	ß
Typ TCR																				
*TCR-05 - 3/8"	30	80	3/8" x 7/32"	21	5	15	15	24	63	35	23	23	75,5	9,2	119	M10	19,7	-	-	45°
TCR-1 - 3/8"	50	180	3/8" x 7/32"	21	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	18	11	45°
TCR-1 - 1/2"	50	180	1/2" x 5/16"	16	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	16,5	12,5	45°
TCR-1 - 5/8"	50	180	5/8" x 3/8"	17	5	15,5	15,5	24	69	36	30	25	86,5	9,2	134	M10	19,7	21,8	15,3	45°
TCR-2 - 5/8"	120	500	5/8" x 3/8"	17	7	18	18	27	90	43	34	30	100	9,2	159	M12	19,7	21,8	15,3	30°
TCR-2 - 3/4"	120	500	3/4" x 7/16"	15	7	18	18	27	90	43	34	30	100	9,2	159	M12	19,7	19,4	17,7	30°
TCR-2 - 1"	120	500	1" x 17 mm	12	7	18	18	27	90	43	34	30	100	8,9	159	M12	19,4	23,9	26,4	30°
TCR-2 - 1 1/4"	120	500	1 1/4" x 3/4"	9	7	18	18	27	90	43	34	30	100	11,5	159	M12	19,4	-	-	30°
TCR-2 - 1 1/2"	120	500	1 1/2" x 1"	9	7	18	18	27	90	43	34	30	100	14	159	M12	19,4	-	_	30°

^{*} Kunststoffausführung


TYP TC

- Linearer Kraftverlauf
- Arbeitswinkel > 45° in beiden Drehrichtungen
- Einfache Montage von innen und außen möglich
- Temperaturbereich -20 °C bis +130 °C
- Unempfindlich gegen Öle und Lösungsmittel
- Bessere Fixierung durch 2 (TCR-1) bzw.
 3 (TCR-2) Nuteinstiche an Rückseite des Grundkörpers

AUFTRAGSBEISPIEL

Spanner für Einfach-Kette – Kettenteilung 1/2" – TCP 1 1/2" S. Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

S = Einfach-Kette **D** = Zweifach-Kette

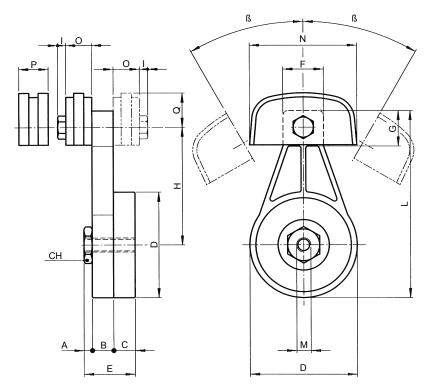
Typ TCP

Polyethylenkopf mit niedrigem Reibwert

	Nev min.	wton max.	Teilung x innere Breite	А	В	С	СН	D	E	F	G	Н	I	L	M	N	0	Р	Q	ß
Тур ТСР																				
*TCP-05 - 3/8"	30	80	3/8" x 7/32"	5	15	15	24	63	35	23	23	75,5	5,5	119	M10	70	20	-	22	45°
TCP-1 - 3/8"	50	180	3/8" x 7/32"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	70	20	20	22	45°
TCP-1 - 1/2"	50	180	1/2" x 5/16"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	70	20	20	22	45°
TCP-1 - 5/8"	50	180	5/8" x 3/8"	5	15,5	15,5	24	69	36	30	25	86,5	7	134	M10	90	22	25	29	45°
TCP-2 - 5/8"	120	500	5/8" x 3/8"	7	18	18	27	90	43	34	30	100	8	159	M12	90	22	25	29	30°
TCP-2 - 3/4"	120	500	3/4" x 7/16"	7	18	18	27	90	43	34	30	100	8	159	M12	90	22	30	29	30°
TCP-2 - 1"	120	500	1" x 17 mm	7	18	18	27	90	43	34	30	100	8	159	M12	110	25	45	35	30°

^{*} Kunststoffausführung

AUFTRAGSBEISPIEL


Spanner für Einfach-Kette – Kettenteilung 1/2" – TCP 1 – 1/2" S.

Lieferung ab Lager für Einfach-Ketten. Für Zweifach-Ketten auf Anfrage.

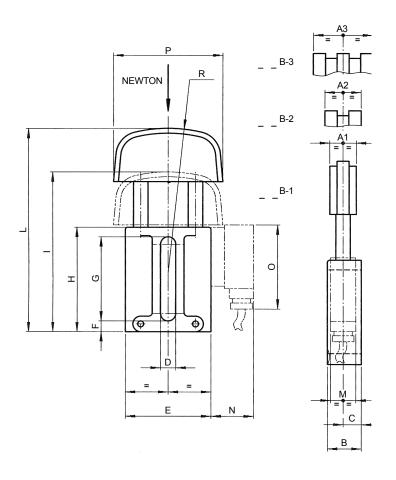
S = Einfach-Kette **D** = Zweifach-Kette

HINWEIS

Montagehinweis Spanner Typ TC → Seite 135

Typ TO عت

Automatische Kettenspanner


	Nev	vton	Teilung x					1												
	min.	max.	innere Breite	A1	A2	А3	В	С	D	Е	F	G	Н	I	L	M	N	0	Р	R
Тур ТО																				
TO-1 - 3/8"	130	250	3/8" x 7/32"	20	20	25	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-1 - 1/2"	130	250	1/2" x 5/16"	20	20	25	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-1 - 5/8"	130	250	5/8" x 3/8"	20	25	41,5	23	12,5	11	56,2	7	58	74	110	138	-	-	-	70	100
TO-2 - 5/8"	180	420	5/8" x 3/8"	22	25	41,5	28	15	12,5	70,5	9	70	87	133	169	-	-	-	90	120
TO-2 - 3/4"	180	420	3/4" x 7/16"	22	30	49	28	15	12,5	70,5	9	70	87	133	169	-	_	_	90	120
TO-3 - 1"	300	650	1" x 17 mm	25	45	78	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-3 - 1 1/4"	300	650	1 1/4" x 3/4"	25	54	90	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-3 - 1 1/2"	300	650	1 1/2" x 1"	25	71	119	33	17,5	14,5	82	9	86	104	160	202	21	35	70	110	140
TO-05 – 3/8"	95	190	3/8" x 7/32"	20	-	-	25	12,5	9	60	10	53	75	120	149	22	48	1,5	70	100
TO-05-DP1 - 3/8"	95	190	3/8" x 7/32"	20	20	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100
TO-05-DP1 - 1/2"	95	190	1/2" x 5/16"	20	20	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100
TO-05-DP1 - 5/8"	95	190	5/8" x 3/8"	20	25	-	25	12,5	9	60	10	53	75	111	139	22	48	1,5	70	100

AUTOMATISCHE KETTENSPANNER

Automatische Kettenspanner kompensieren die Kettenlängung. Die Spanner der Serie TO-AT-ET haben eine lange Lebensdauer und sind aus hochwertigem Material hergestellt. Die Betriebshöchsttemperatur beträgt 65 °C (100 °C für den ET-Spanner).

Auf Anfrage produzieren wir:

- Ausführung für den Nahrungsmittelsektor mit Schraubbolzen und Feder aus INOX AISI Stahl 304
- Spezielle Kopfprofile
- Ausführung TO-05 und TO-05 DP1 Grundkörper aus Kunststoff (DELRIN). Leichte Ausführung mit niedrigerer Spannkraft – lieferbar auf Anfrage

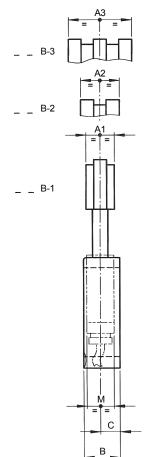
 $^{*\ {\}sf Kunstoffausf\"{u}hrung}$

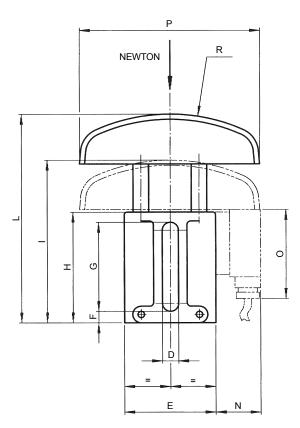
الانتون Typ TA

		wton max.	Teilung x innere Breite	A1	A2	А3	В	С	D	Е	F	G	Н	I	L	M	N	0	Р	R
Тур ТА																				
TA-1 – 3/8"	130	250	3/8" x 7/32"	20	20	25	23	12,5	11	56,2	7	58	74	115	143	-	-	-	140	120
TA-1 - 1/2"	130	250	1/2" x 5/16"	20	20	35	23	12,5	11	56,2	7	58	74	115	143	-	-	-	140	120
TA-2 - 5/8"	180	420	5/8" x 3/8"	22	25	41,5	28	15	12,5	70,5	9	70	87	128	164	-	-	-	140	140
TA-2 - 3/4"	180	420	3/4" x 7/16"	22	30	49	28	15	12,5	70,5	9	70	87	128	164	-	-	-	140	140
TA-3 – 1"	300	650	1" x 17 mm	25	45	78	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 - 1 1/4"	300	650	1 1/4" x 3/4"	25	54	90	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 – 1 1/2"	300	650	1 1/2" x 1"	25	71	119	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160
TA-3 – 1 3/4"	300	650	1 3/4" x 31 mm	29,5	-	-	33	17,5	14,5	82	9	86	104	145	187	21	35	70	140	160

SERIE TA

- Verschleißfester Spannkopf aus Kunststoff mit niedrigem Reibwert (dynamischer Reibwert 0.06 auf trockenem Stahl)
- Geschliffene, ultrafeste Schraubenbolzen aus Stahl
- Selbstschmierendes Bronzelager für die Achsenbewegung
- Geeignet auch für Reversierbetrieb


AUFTRAGSBEISPIEL

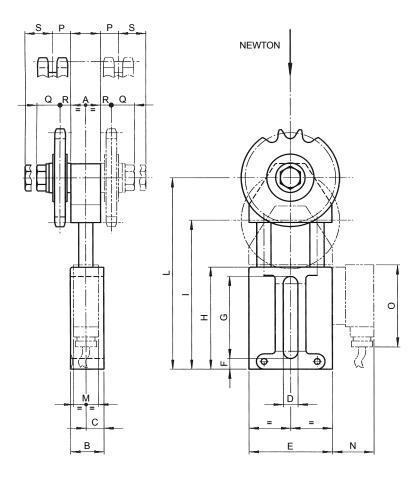

Spanner für Duplex-Kette – Kettenteilung 1/2" = TA 1 - 1/2"-D

S = Einfach-Kette **D** = Zweifach-Kette

T = Dreifach-Kette

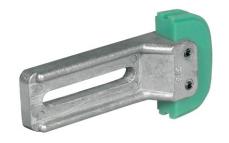
N.B.: Die Spanner sind für Ketten nach ISO geeignet.

المحتودة Typ ETR


mit gelagerten Kettenradscheiben

	Nev min.	vton max.	Teilung x innere Breite	Z	А	В	С	D	Е	F	G	Н	ı	L	M	N	0	Р	Q	R	S
Typ ETR																					
ETR1 - 3/8"	130	250	3/8" x 7/32"	21	20	23	12,5	11	56,2	7	58	74	99	127	-	-	-	11	19,7	9,2	18
ETR1 - 1/2"	130	250	1/2" x 5/16"	16	20	23	12,5	11	56,2	7	58	74	99	127	-	-	-	12,5	19,7	9,2	16,5
ETR2 - 5/8"	180	420	5/8" x 3/8"	17	25	28	15	12,5	70,5	9	70	87	127	163	-	-	-	15,3	19,7	9,2	21,8
ETR2 - 3/4"	180	420	3/4" x 7/16"	15	25	28	15	12,5	70,5	9	70	87	127	163	-	-	-	17,7	19,7	9,2	19,4
ETR3 - 1"	300	650	1" x 17 mm	12	30	33	17,5	14,5	82	9	86	104	151	193	21	35	70	26,4	19,4	11,3	26,4
ETR3 - 1 1/4"	300	650	1 1/4" x 3/4"	9	30	33	17,5	14,5	82	9	86	104	151	193	-	-	-	29,7	19,4	11,5	37,5

SERIE ETR


- Wartungsfrei
- Spannkraft auf Wunsch änderbar
- unempfindlich gegen Öle und Lösungsmittel
- Einfache Montage und Nachbestellung
- Geeignet auch für Reversierbetrieb

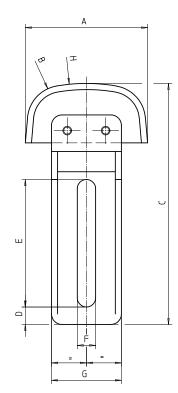
Automatische Spanner

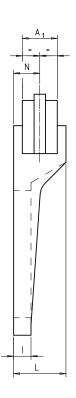
كنابة Typ TF

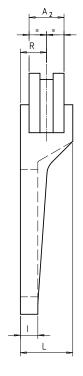
Kunststoff - Spannkopf

	Teilung	А	В	С	D	Е	F	G	Н	ı	L	N	R	A ₁	A ₂
Typ TF															
TF 1	3/8"	69	20	138	10	73	10,5	40	100	15	30	15	15	20	20
TF 1	1/2"	69	20	138	10	73	10,5	40	100	15	30	15	15,25	20	20,5
TF 2	5/8"	89	20	164	12	85	12,5	50	120	18	36	18	19,5	22	25
TF 2	3/4"	89	20	164	12	85	12,5	50	120	18	36	18	21,75	22	29,5
TF 3	1"	109	25	173	13	82	12,5	60	140	20	40	20	30,5	25	46
TF 3	1 1/4"	109	25	173	13	82	12,5	60	140	20	40	20	-	25	-
TF 3	1 1/2"	109	25	173	13	82	12,5	60	140	20	40	20	-	25	-

TYP TF


- Verschleißfester Spannkopf aus Kunststoff mit niedrigem Reibwert (μ = 0.06)
- Einfache Montage und Nachstellung
- Verwendung im Temperaturbereich bis 65 °C
- Geeignet auch für Reversierbetrieb


AUFTRAGSBEISPIEL

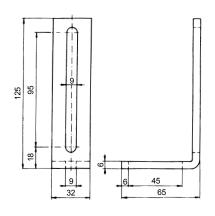

– Spanner für doppelte Kette / – Kettenteilung 1/2" = TF 1 - 1/2" – D

S = Einfach-Kette **D** = Zweifach-Kette **T** = Dreifach-Kette

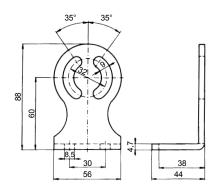
Die Spanner sind für Ketten nach den ISO-Bestimmungen geeignet.

Swis Kettenspanner AMS

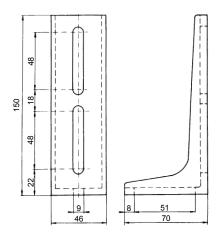
mit Sperklinkenfunktion



tür imis Key	05,	Spameineit Nr.	Zähnezah,	Spannkar	Spannwegs	Nach stellweg	Mage A	$M_{\alpha \beta c}^{\alpha \beta c}$	Sundelemen, W.	Befestion Winkerson	Spanner Kommer Mit Reet
Typ AMS											
G 67	06 B-1	10	21	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 116
G 67	06 B-1	10	21	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 126
L 85	08 B-1	10	18	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 118
L 85	08 B-1	10	18	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 128
M 106	10 B-1	10	17	0-100	0-25	60	47,6	39,4	AMS 11	01	AMS 1110
M 106	10 B-1	10	17	0-100	0-25	60	47,6	39,4	AMS 12	02	AMS 1210
M 127	12 B-1	20	15	0-300	0-45	40	52,0	40,0	AMS 23	03	AMS 2312
M 1611	16 B-1	20	12	0-300	0-45	40	52,65	41,3	AMS 23	03	AMS 2316

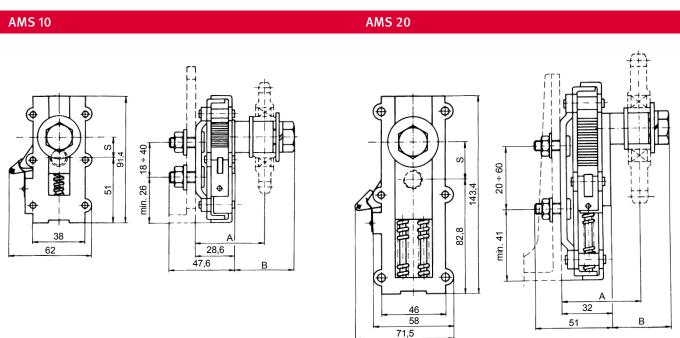

TYP AMS

- Automechanische Nachspannung
- Gerasterte Rückschlagsicherung
- Gleichbleibende Schwingungsdämpfung
- Einfache Nachstellvorrichtung
- Wartungsarm


 Unempfindlich gegen Öle und Lösungsmittel

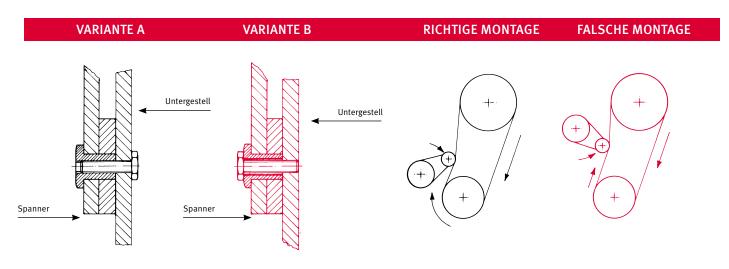
Befestigungswinkel 01

Befestigungswinkel 02


Befestigungswinkel o3

Swis Kettenspanner AMS

mit Sperklinkenfunktion



الانت Typ TC

Montage des Spanners Typ TC

137

Kettenratgeber

Regelmäßige Wartung und Schmierung sind Grundvoraussetzung für einen geringen Verschleiß und eine lange Lebensdauer des Kettentriebes. Die Wartungs- und Schmierintervalle des Kettentriebes werden durch die Betriebsbedingungen der Anlage bestimmt. Unser Kettenratgeber gibt Ihnen einen Überblick über unsere Auswahl an iwis-Erstschmierstoffen und den empfohlenen Nachschmierstoff. Alle Erstschmierstoffe sind eigens für iwis entwickelt und in ihrer Zusammensetzung optimal auf das Produkt Kette abgestimmt. Unser Technisches Service Team gibt Ihnen gerne weitere Hilfestellung zur Wartung und Handhabung. Wir beraten Sie gerne!

Effiziente Schmierung der 🎞 Ketten

Schmiertechniken

DIE OPTIMALE LÖSUNG FÜR JEDEN ANWENDUNGSFALL

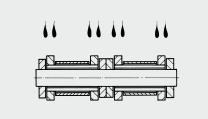
Eine ausreichende und wirksame Schmierung der Kettengelenke erhöht die Lebensdauer der Ketten um ein Vielfaches. Der richtig ausgewählte Schmierstoff und das passende Schmierverfahren gewährleisten gute Verschleißminderung, ausreichenden Korrosionsschutz und optionale Dämpfeigenschaften.

Unzählige Versuche auf speziell entwickelten Testgeräten und eine enge Zusammenarbeit mit renommierten Schmierstoffherstellern machen iwis zu dem kompetenten Partner für alle Fragen der Kettenschmierung. Nach exakt festgelegten und ständig überwachten Verfahrensabläufen werden alle iwis-Ketten ausreichend und zuverlässig mit hochwertigen Erstschmierstoffen versorgt und einbaufertig geliefert.

Alle Erstschmierstoffe sind eigens für iwis entwickelt und in ihrer Zusammensetzung optimal auf das Produkt Kette zugeschnitten.

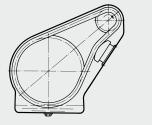
ALLGEMEINE HINWEISE

Vor der Nachschmierung sollte eine Reinigung des Kettentriebes mittels Bürste erfolgen, um den Zutritt des Schmiermittels zu ermöglichen. Zusätzlich kann die Oberfläche der Kette mit Reinigungsbenzin oder Petroleum gesäubert werden. Ein völliges Tauchen und Auswaschen ist nicht empfehlenswert.

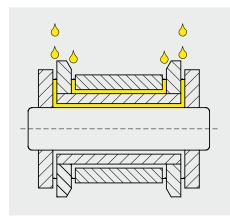

Verbindungsglieder (z.B. Steckglieder) sind bei separater Lieferung nur rostschutzgetaucht und müssen beim Einbau gefettet werden. Bei Lieferung zusammen mit den Ketten sind die Verbindungsglieder mit dem gleichen Schmierstoff wie die Ketten versehen.

SCHMIERUNG VON HAND

mittels Pinsel, Ölkanne oder <u>Sprühdose</u> bei langsam laufenden Kettentrieben. Das bewährte iwis VP6 Kombi Superplus Kettenspray zeichnet sich durch folgende Eigenschaften aus:


- Synthetischer Hochleistungs-Kettenschmierstoff
- Optimale Schmierwirkung und Haftung
- Sehr gute Kriechfähigkeit
- Für Normal- und Hochtemperaturanwendungen bis +250 °C
- Hervorragender Korrosionsschutz
- Auch für O-Ringketten gut geeignet

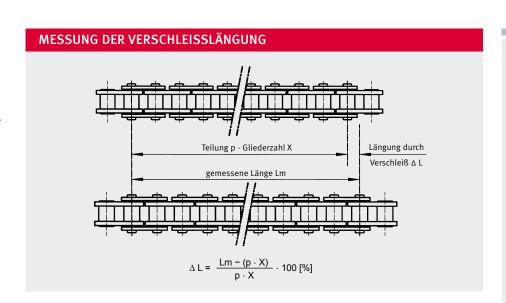
TROPFSCHMIERUNG



mittels Tropföler, automatischer Schmierstoffgeber oder Zentralschmiereinheiten bei mittleren Kettengeschwindigkeiten.

ÖLBADSCHMIERUNG

mittels geschlossener Kettenkasten und ggfs. zusätzlicher Schleuderscheibe bei schnell laufenden Kettentrieben.



Das Schmierprodukt muss in das Kettengelenk eindringen können. Um das sicherzustellen, sollte der Schmierstoff gezielt in den Spalt zwischen Innen- und Außenlaschen eingebracht werden.

Perfekte Wartung der VIS® Kettentriebe

Regelmäßige Wartung und Schmierung sind Grundvoraussetzungen für geringen Verschleiß und lange Lebensdauer des Kettentriebes. Die Betriebsbedingungen (Zugkräfte, Temperaturen, Verschmutzungen, aggressive Medien) bestimmen die Wartungs- und Schmierintervalle sowie die darauf abgestimmte Nachschmierung.

WARTUNG

Bei einer regelmäßigen Sichtkontrolle sollte besonders auf Verschleißlängung, Spannung, Schmierzustand und Verschleißerscheinungen durch Spurfehler geachtet werden.

Kontrolle der maximal zulässigen Verschleißlängung:

Die Länge einer Kette ist durch die Teilung p und die Gliederzahl X definiert. Im Laufe der Zeit erfolgt eine Längung durch Verschleiß, die normalerweise auch im eingebauten Zustand gemessen werden kann. Der Unterschied zur genauen Messung unter vorgeschriebener Messlast ist gering, wenn über eine möglichst große Anzahl von Kettengliedern, ca. 20 bis 40, gemessen wird.

Ein Austausch der Kette sollte erfolgen bei:

- max. 3 % bei einfachen Trieben
- ca. 2 % bei Hochleistungstrieben
- ca. 1 % bei Sonderanwendungen (Synchronlauf, Positionierung)

Ein kontrolliertes Nachspannen der Kette wirkt sich positiv auf die Lebensdauer aus. Dabei sollte ein zu starkes Nachspannen ebenso vermieden werden wie ein zu großer Durchhang. Als Richtwert können ca. 5% der tatsächlich auftretenden Kettenzugkraft angesetzt werden. Bei parallel laufenden Ketten müssen beide Stränge gleichmäßig gespannt werden, am besten über eine gemeinsame Welle für das rechte und linke Kettenrad. Wenn keine automatische Spannvorrichtung vorhanden ist, muss die Kette von Hand nachgestellt werden, z.B. durch Verändern des Achsabstandes. Eine weitere Möglichkeit bei längeren Trieben ist das Verkürzen der Kette durch Herausnehmen einzelner Glieder, sofern die Verschleißlängung noch relativ gering ist. Zum Zerlegen und Verbinden von Rollenketten gibt es für die beiden unterschiedlichen Bolzenformen, abgesetzt oder glatt, verschiedene Werkzeuge.

Vor der **Nachschmierung** sollte eine **Reinigung** der Ketten (und Kettenräder) von stark anhaftenden Verunreinigungen erfolgen, um den Zutritt des Schmiermittels über die Laschenrücken zu ermöglichen.

Der grobe Schmutz wird mit einer harten Bürste entfernt. Zusätzlich kann die Oberfläche der Kette, z.B. mit Waschbenzin, gesäubert werden. Ein völliges Tauchen und Auswaschen, z.B. mit Petroleum, ist nicht empfehlenswert, da sich das Reinigungsmittel nicht restlos verflüchtigt und so das Eindringen des neuen Schmierstoffes verhindert.

Bei der **Sichtkontrolle** sollte auch auf Anlauf- und Verschleißerscheinungen aufgrund von Spurfehlern geachtet werden. Diese werden durch nicht fluchtende oder schrägstehende Kettenräder oder nicht parallele Ketten verursacht.

Richtwerte für die Fluchtungsabweichung je 100 mm Achsabstand:

- 0,1 mm bei schnellaufenden Trieben und kurzen Achsabständen
- 0,2 mm bei langsam laufenden Trieben.

Auch die Kettenräder sollten immer überprüft und ggfs. durch neue ersetzt werden. Neue Ketten auf abgenutzten Kettenrädern werden schneller unbrauchbar.

TYPE Erstschmierstoffe

Die optimale Lösung für jeden Anwendungsfall

UNSERE ERSTSCHMIERSTOFFE IM ÜBERBLICK

Tieftemperaturschmierung

Die Tieftemperaturschmierung hat eine optimale Schmierwirkung und ist im gesamten Temperaturbereich fließfähig.

Technische Daten:

Chemischer Aufbau	Esteröl + Synthetisches Kohlen- wasserstoff-Öl + UV-Indikator
Farbe	Braun
Viskosität	Kinematisch (40 °C): 68 mm²/s
Dichte	ca. 0.92 g/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	-40 °C bis +150 °C

iwis-Empfehlung für Nachschmierstoffe

• Tieftemperatur-Kettenöle verschiedener Hersteller

IP3

Langzeitschmierung

Die Langzeitschmierung ist optimal bei höheren Geschwindigkeiten, Belastungen und Temperaturen. Durch extrem hohe Viskosität absolut abschleuderfest über den gesamten Temperaturbereich.

Technische Daten:

Chemischer Aufbau	Mineralöl + Synthetisches Kohlenwasserstoff-Öl
Farbe	Braun
Viskosität	Kinematisch (40 °C): 7200 - 8800 mm²/s
Dichte	0.9 g/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	0 °C bis +150 °C

iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Handelsübliche Hochleistungs-Kettenöle

IP2

Standardschmierstoff

Der bewährte Standardschmierstoff mit guter Schmierwirkung und hervorragendem Korrosionsschutz ist für Anwendungen aller Art geeignet.

Technische Daten:

Chemischer Aufbau	Mineralöl + Synthetisches Kohlenwasserstoff-Öl
Farbe	Braun
Viskosität	Kinematisch (40 °C): 12 cm²/s (1200 cSt)
Dichte	0.9 g/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	-10 °C bis +80 °C

iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Alle handelsüblichen Kettenöle

IP4

Hochtemperaturschmierstoff

Thermisch stabil mit gutem Verschleiß- und Korrosionsschutz. Geringe Verdampfungsrate bis +250 °C und keine Rückstandsbildung bei Temperaturen höher +250 °C. Mit NSF-H2 Zulassung.

Technische Daten:

Chemischer Aufbau	Esteröl + Synthetisches Kohlenwasserstoff-Öl
Farbe	Gelb
Viskosität	Kinematisch (40 °C): 11.75 cm²/s
Dichte	0.91/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	0 °C bis +250 °C

iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Hochtemperatur-Kettenöle verschiedener Hersteller, bei Einsatz-Temperaturen über +250 °C mit Festschmierstoffanteilen

UNSERE ERSTSCHMIERSTOFFE IM ÜBERBLICK

Korrosionsschutz

Der Korrosionsschutz zur Konservierung mit geringer Schmierwirkung.

Technische Daten:

Chemischer Aufbau	Synthetisches Kohlenwasserstoff- Öl + Esteröl
Farbe	Braun
Viskosität	Kinematisch (40 °C): 20 mm²/s
Dichte	ca. 0.86 g/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	0 °C bis +150 °C

iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Alle handelsüblichen Kettenöle

IP16

Lebensmittelschmierung

Mit gutem Verschleiß- und Korrosionsschutz. Erfüllt die hohen Anforderungen der USDA-H1 und LMBG – Kontakt mit Lebensmittel zugelassen.

Technische Daten:

Chemischer Aufbau	Synthetisches Kohlenwasserstoff- Öl + Esteröl
Farbe	Gelb
Viskosität	Kinematisch (40 °C): 15 cm²/s (1500 cSt)
Dichte	ca. 0.86 g/cm³ (20 °C)
Physikalischer Zustand	Flüssigkeit
Temperaturbereich	-25 °C bis +120 °C

iwis-Empfehlung für Nachschmierstoffe

• Lebensmittelechte Kettenöle

IP14

Trockenschmierung (Einbrenngleitlack)

Die Trockenschmierung ist ideal für langsam laufende Kettentriebe und geringe bis mittlere Belastungen.

Technische Daten:

Farbe	Dunkelgrau
Temperaturbereich	-70 °C bis +250 °C

iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Kettenöle mit Festschmierstoffanteilen wie Graphit, MOS2

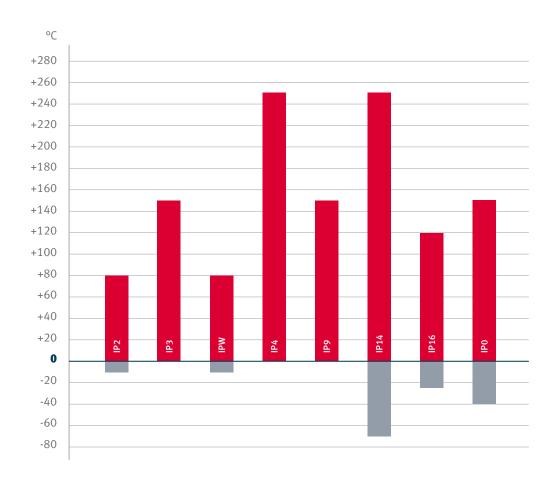
IPW

Hochleistungsschmierwachs

Ermöglicht wesentlich längere Nachschmierintervalle durch hohem Verschleißschutz. Als »Sperrfett« in allen Umgebungen mit Staub und Puder problemlos einsetzbar.

Technische Daten:

Chemischer Aufbau	Wachs + Mineralöl + Synthe- tisches Kohlenwasserstoff-Öl
Farbe	Beige
Dichte	ca. 0.89 g/cm³ (20 °C)
Physikalischer Zustand	Paste
Temperaturbereich	-10 °C bis +80 °C


iwis-Empfehlung für Nachschmierstoffe

- iwis VP6 Kombi Superplus (Spray)
- Handelsübliche Hochleistungs-Kettenöle

TYPE Erstschmierstoffe

Gesamtübersicht Temperaturbereiche

IP2

Standardschmierung mit guter Schmierwirkung und hervorragendem Korrosionsschutz für alle Anwendungen.

IP3

Langzeitschmierung für höhere Geschwindigkeiten, absolut abschleuderfest.

IPW

Grifffestes Hochleistungsschmierwachs mit sehr hohem Verschleißschutz ermöglicht wesentlich längere Nachschmierungsintervalle. In Umgebungen mit Staub und Puder problemlos einsatzbar.

IP4

Thermisch stabiler Hochtemperaturschmierstoff mit gutem Verschleiß und Korrosionsschutz.

IP9

Korrosionsschutz zur Konservierung mit sehr geringer Schmierwirkung.

IP14

Trockenschmierung bei langsam laufenden Kettentrieben und geringen bis mittleren Belastungen.

IP16

Lebensmittelschmierung mit gutem Verschleiß- und Korrosionsschutz. Erfüllt die hohen Anforderungen der USDA-H1 und LMBG.

IP0

Tieftemperatur-Schmierung mit optimaler Schmierwirkung fließfähig im gesamten Temperaturbereich.

Kettenratgeber

Effiziente Schmierung der তে Ketten

Nachschmierstoff

EMPFOHLENER NACHSCHMIERSTOFF

Die Lebensdauer einer Kette hängt entscheidend von der richtigen und ausreichenden Nachschmierung ab. Durch die oszillierenden Bewegungen des Kettengelenkes verbraucht sich der Erstschmierstoff je nach Betriebsbedingungen im Laufe der Zeit. Bei regelmäßiger Nachschmierung befindet sich das Kettengelenk überwiegend im Bereich der Mischreibung. Fehlende Schmierung oder unsachgemäß gewählte Nachschmierstoffe verursachen Grenzreibung, was zu Passungsrostbildung und erhöhtem Kettenverschleiß führt.

Für eine wirkungsvolle Nachschmierung ist die Auswahl des Schmierstoffes und die richtige Schmiertechnik entscheidend.

iwis VP6 Kombi Superplus Spray

Ein sehr haftfestes vollsynthetisches Hochtemperaturkettenöl für alle Industriekettenanwendungen.

Technische Daten:

Chemischer Aufbau	Synthetisches Kohlenwasserstoff- Öl	
Farbe	Grün, klar	
Viskosität	Kinematisch, ca. 1800 – 2200 mm²/s bei 40 °C	
Dichte	ca. 0.9 g/cm³ (20 °C)	
Physikalischer Zustand	Aerosol	
Temperaturbereich	0 °C bis +250 °C	

Vorteile

- Sehr hohe Hochtemperaturstabilität
- Geringe Verdampfungsneigung
- Sehr gute Haftfähigkeit
- Gute Kriechfähigkeit trotz hoher Viskosität
- Sehr hoher Verschleißschutz

NACHSCHMIERSTOFFE

sollten - je nach Einsatzfall - folgende Eigenschaften erfüllen:

- Haftfähigkeit
- · Verträglichkeit mit Erstschmierstoff
- Korrosionsschutz
- Tragfähigkeit des Schmierfilms
- Kriechfähigkeit
- Notlaufschmierung
- Hohe Viskosität und gleichzeitig Fließfähigkeit
- Hochtemperaturstabilität
- Wasserabweisung
- Medienbeständigkeit etc.

Nachschmierung

oder wartungs freie Ketten

sales-muenchen@iwis.com

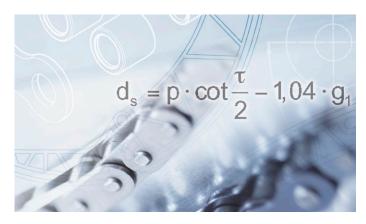
Kettenratgeber

⋽₩īs® Kettentechnik

Wichtige Instrumente für Sie

KETTENAUSLEGUNG

Wir unterstützen Sie gerne bei der Auslegung Ihres Kettentriebes. Mit unserem Anfrageformular können Sie uns einfach und bequem die notwendigen Daten für eine Auslegung zukommen lassen. Das Formular kann nach Ausfüllen der erforderlichen Felder durch einen Klick auf die Schaltfläche am unteren Blattrand per E-Mail-Client an chaindrive@iwis.com versendet werden.


www.iwis.de/kettenauslegung

CAD-DATENBANK

Download, Import, Fertig!

In unserer CAD-Datenbank finden Sie 3D-Modelle (in über 30 Dateiformaten) von Standard-Rollenketten und Verbindungsgliedern, die Ihnen das Konstruieren erleichtern.

www.iwis.de/cad

KETTENBERECHNUNGSPROGRAMM

Als Unterstützung bei der individuellen Kettentriebauslegung bzw. der Vorauswahl einer geeigneten Kette, stellt Ihnen iwis kostenfrei eine spezielle PC-Software zur Verfügung. Fragen Sie unser **Customer Service Team!**

www.iwis.de/kettenberechnung

HANDBUCH KETTENTECHNIK

Das Handbuch Kettentechnik stellt eine Zusammenfassung des technischen Wissens über Kettentriebe dar, das der Konstrukteur bei der Auslegung benötigt. Ergänzt wird dies durch Rechenbeispiele und Schilderung typischer Anwendungsfälle.

www.iwis.de/downloads

Kettenratgeber

Syvis Kettenleitfaden

Welche Anwendung erfordert welchen Typ?

JWis Kettenleitfaden

Wichtige Informationen und Hinweise

WICHTIG

Der folgende Leitfaden unterstüzt Sie bei der Entscheidung der Kettenauswahl. Aber beachten Sie bitte, dass jede Anwendung individuell ist. Keinesfalls sollten Sie das Ergebnis als Grundlage einer Bestellung verwenden. Wenden Sie sich hierzu bitte an unsere kompetenten Mitarbeiter, die Ihnen gerne ein individuelles Angebot unterbreiten. Wir übernehmen daher keinerlei Gewähr oder Haftung.

INFORMATIONEN ZU...

- SL-Ketten
 - → Seite **16** bis **19**
- vernickelte Ketten
 - → Seite **16** bis **19**
- MEGAlife wartungsfreie Ketten → Seite 40
- CR korrosionsbeständige Ketten → Seite 66

KETTENSTANDARDLÄNGEN

- 5 m
- 10 m • 10 Fuß

Abgepasste Längen können entweder offen oder geschlossen geliefert werden. Sonderlängen (z.B. auf Haspeln) sind auf Anfrage und abhängig vom Kettentyp verfügbar.

Bei einem evtl. erforderlichen exakten Ketten-Parallellauf, insbesondere vor allem bei Förderketten mit gegenüberliegenden Mitnehmer- oder Winkellaschen, können in der Länge genau aufeinander abgestimmte und gebündelte oder entsprechend gekennzeichnete Kettenstränge gefertigt und geliefert werden.

UNSERE FÖRDERKETTEN

ZUSCHLÄGE

Zuschläge werden berechnet für:

- abgepasste Längen
- Sonderschmierungen
- Kurzlängen
- Sondertoleranzen
- Sonderbeschichtungen
- vernickelte Ketten und Einzelteile Preise auf Anfrage

SONDERKETTEN

Sonderketten nach Kundenzeichnungen auf Anfrage. Mindestabnahmemenge für Sonderketten sind 50 m.

FÜR EINZELTEILE GILT FOLGENDE MINDESTABNAHMEREGELUNG

Größe	Innenglied / Außenglied / Steckglied	Gekröpftes Glied
6 mm - 3/4"	je 20 Stück	je 10 Stück
1" - 1 1/4"	je 10 Stück	je 10 Stück
Zweifach – Dreifach	je 5 Stück	je 5 Stück
ab 1 1/4"	je 1 Stück	je 1 Stück

iwis Präzisionsketten

Handbuch Kettentechnik

MEGAlife Rollenketten

Transferketten

Spitzlaschenketten

Scharnierbandketten

Antriebs- und Förderketten

Rollen- und Förderketten

Unsere Standorte

Deutschland

iwis antriebssysteme GmbH & Co. KG Albert-Roßhaupter-Straße 53 81369 München Tel. +49 89 76909-1500 Fax +49 89 76909-1198 sales-muenchen@iwis.com

Frankreich

iwis systèmes de transmission 10, rue du Luxembourg 69330 Meyzieu Tel. +33 4374515-70 Fax +33 4374515-71 salesfr@iwis.com

USA

iwis drive systems, LLC Building 100, 8266 Zionsville Road Indianapolis, IN 46268 Tel. +1 317 821-3539 Fax +1 317 821-3569 sales@iwisusa.com

Tschechien

iwis antriebssysteme spol. s r.o. Písecká 893 38601 Strakonice Tel. +420 383 411811 Fax +420 383 321695 salescz@iwis.com

Deutschland

iwis antriebssysteme GmbH Essener Straße 23 57234 Wilnsdorf Tel. +49 2739 86-0 Fax +49 2739 86-22 sales-wilnsdorf@iwis.com

Schweiz

iwis AG Kettentechnik Bahnweg 4 (Postfach) 5504 Othmarsingen Tel. +41 62 8898999 Fax +41 62 8898990 info@iwis-ketten.ch

Kanada

iwis drive systems, Inc. 101-19097, 26th Avenue, Surrey BC V3Z 3V7 Tel. +1 604 560-6395 Fax +1 604 560-6397 salesca@iwisusa.com

Türkei

iwis tahrik sistemleri sanayi ve ticaret ltd.şti Kağıthane Merkez Mah. Bağlar Cad. No: 14 Kağıthane Ofis Park 4C-Blok, TT04-FF2 34406 Kağıthane-İstanbul Tel. +90-212-939 3843 Fax +90-212 939 3701 salestr@iwis.com

Deutschland

iwis agrisystems Schützenweg 5 36205 Sontra Tel. +49 5653 9778-0 Fax +49 5653 9778-26 agrisystems@iwis.com

Italien

iwis antriebssysteme Italia Tel. +39 340 9296142 Fax +49 89 7690949-1726 salesit@iwis.com

Brasilien

iwis Sistemas de Transmissão de Energia Mecânica Ltda. Rua Bento Rosa, nº 1816 Bairro Hidráulica 95.900-000 Lajeado, RS Tel. +55 51 3748-7402 salesbrazil@iwis.com

Großbritannien

iwis drive systems Ltd. Unit 8c Bloomfield Park Bloomfield Road, Tipton West Midlands, DY4 9AP Tel. +44 12 15213600 Fax +44 12 15200822 salesuk@iwis.com

China

iwis drive systems (Suzhou) Co., Ltd. No. 266 LvliangShan Road 215153 Suzhou SND Tel. +86 512 8566-3010 Fax +86 512 8566-3009 salescn@iwis.com

Südafrika

iwis drive systems, (Pty) Ltd. Unit 3, 127 Koornhof Road Meadowdale, 1613 Tel. +27 11 392-2306 Fax +27 11 392-3295 salessa@iwis.com

www.iwis.com

Ihr Partner vor Ort