

ROTAFRIX® Reibräder, Reibringe und Führungsrollen für Wälzgetriebe und Trommelantriebe

ContiTech

Hightech-Produkte und Systeme, Kombinationen aus Kautschuk, Kunststoffen und anderen Werkstoffen sowie Elektronik: Das ist ContiTech. Wir sind Entwicklungspartner und Erstausrüster für alle bedeutenden Industrien vom Automobilbau über die Schienen- und Luftverkehrsindustrie bis zum Maschinen- und Apparatebau. Wir bündeln unsere Fähigkeiten unter der Dachmarke ContiTech und zeigen in der Gruppe die Breite und Tiefe unserer Kompetenz. Die 7 Geschäftsbereiche von ContiTech und deren Produktmarktsegmente richten sich nach den Bedürfnissen ihrer Kunden und Märkten aus. Sie agieren einerseits mit der Flexibilität eines mittelständischen Unternehmens, andererseits mit der Kapitalkraft und den Synergiepotentialen eines Konzerns, der Continental AG.

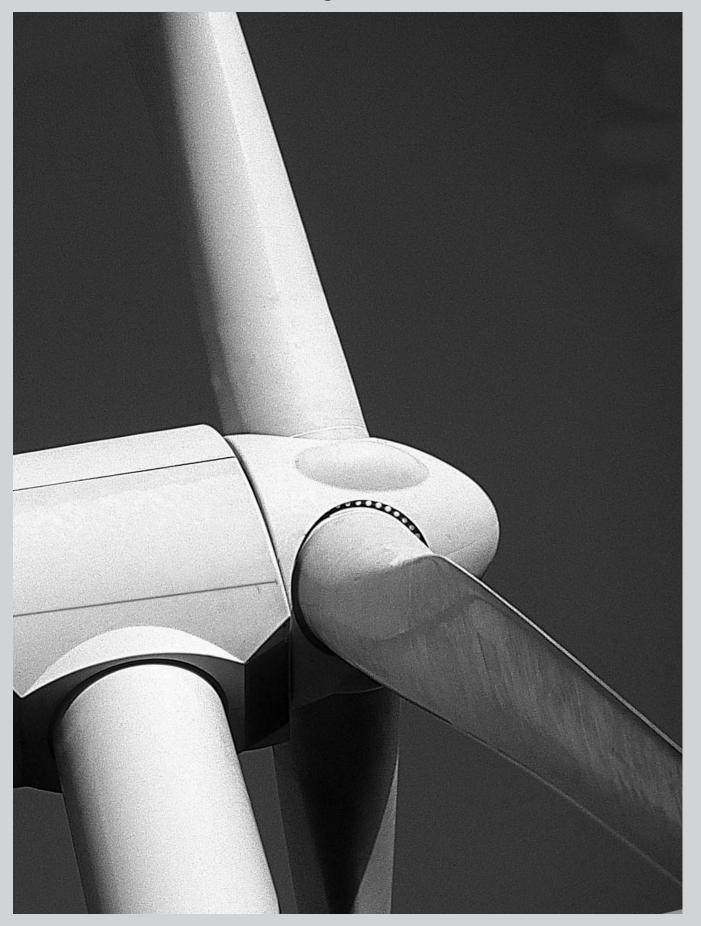
Vibration Control

ContiTech Vibration Control ist Innovationsträger und Entwicklungspartner für schwingungstechnische Anwendungen in der Automobilindustrie, für Spezialfahrzeuge, Motorantriebe, Anlagen und Maschinen. Die Anforderungen moderner stationärer Maschinen im Hinblick auf Schwingungs- und Schallminderung sind vielfältig. Wir arbeiten mit modernen Methoden unter Berücksichtigung heutiger Anforderungen bezüglich Umweltverträglichkeit und Ressourcenschonung. Wir verstehen Fahrzeuge als Gesamtsystem. Fahrwerkskompetenz heißt für uns, das Chassis und alle anderen Bauteile optimal aufeinander abzustimmen. Mit unserem ganzheitlichen Verständnis sowie unserem breiten System-, Produkt- und Anwendungsknowhow werden wir den gewachsenen Anforderungen gerecht und schonen gleichzeitig Ressourcen und Umwelt. Im Sinne unserer Partner und Kunden zeigen wir ein hohes Bewusstsein für Qualität, Kosten und eine zuverlässige Logistik.

ROTAFRIX® Reibräder, Reibringe und Führungsrollen

ROTAFRIX® Produkte sind das Ergebnis langjähriger Erfahrung auf dem Gebiet der Antriebstechnik. Sie bieten mit dem Werkstoff Gummi optimale Eigenschaften für Wälzgetriebe und Trommelantriebe. Ständige Entwicklung und moderne Technologien gewährleisten Produkte größter Zuverlässigkeit mit gleich bleibend hohem Qualitätsstandard. Innovative Leistungsfähigkeit macht ContiTech zum Partner für maßgeschneiderte Problemlösungen und fallspezifische Beratung durch unsere Anwendungstechnik. Diese Broschüre bietet einen detaillierten Überblick über ROTAFRIX® Reibringe, Führungsrollen und Reibräder, über deren Eigenschaften, das Lieferprogramm, die Montage sowie anwendungstechnische Hinweise.

Service: Für die häufigsten Anwendungsfälle können Sie sich online unter www.schwingmetall.com die passende Größe berechnen lassen. Für Sonderfälle wenden Sie sich bitte an unseren ROTAFRIX® Partner oder an unsere Produktentwicklung.

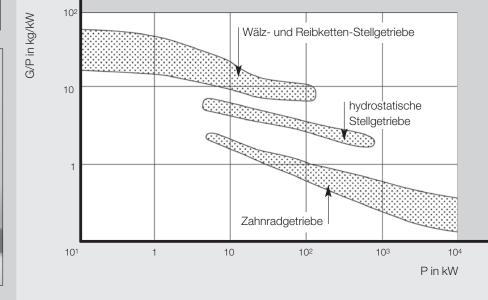

Inhaltsverzeichnis

3 – 11	1 Produktbeschreibung
4	Einsatz
5	Eigenschaften
6 – 7	Aufbau Reibräder, Lieferprogramm
8 – 12	Aufbau Reibringe und Führungsrollen, Lieferprogramm
13 – 20	2 Montage, Bearbeitung, Anwendung
14	Montage und Bearbeitung
15 – 18	Hinweis für die Montage
19 – 33	3 Berechnungsunterlagen
20 – 21	Anwendung
22 – 27	Formelzeichen, Einheiten, Begriffe
28 – 29	Berechnungsbeispiel Gummiwälzbetriebe
30 – 32	Berechnungsbeispiel Trommelantrieb
33	Contilan® Rollen
34 – 35	4 Stichwortverzeichnis

5 Datenblätter

Aufbau

1 Produktbeschreibung


ROTAFRIX® Reibräder, Reibringe und Führungsrollen

Einsatz

Gummiwälzgetriebe sind wirtschaftlich und leistungsfähig, einfach im Aufbau, geräuscharm und wartungsfrei. Diese Eigenschaften haben Konstrukteure schon immer angeregt, besondere Antriebsprobleme mit Gummiwälzgetrieben zu lösen. Sie werden universell im gesamten Maschinen- und Werkzeugbau, in der Fördertechnik und für Trommelantriebe eingesetzt.

ROTAFRIX® Reibringe und Reibräder eignen sich hervorragend für den Einsatz in Trommelantrieben. Diese besondere Form der Gummiwälzgetriebe wird in weiten Teilen des Maschinenbaues als wirtschaftliche Form des Antriebes von z.B. Rohrmühlen und Kugelmühlen eingesetzt.

Einordnung der Wälzgetriebe nach Leistungsgewicht und Leistungsbereich

Einsatzgebiet von Reibrädern

Die bekanntesten Beispiele für kraftschlüssige Leistungsübertragungen sind die Systeme Fahrzeugreifen/Straße und Rad/Schiene. Die zur Fortbewegung dienende Umfangskraft wird vom Rad durch Reibschluss auf die Schiene übertragen. Die übertragbare Reibkraft ist abhängig von der Radbelastung und von der Reibungszahl zwischen Rad und Schiene. Die Funktion eines Gummiwälzgetriebes wird entscheidend vom richtigen Einbau der Wälzräder beeinflusst.

Einsatzgebiet von Reibringen und Führungsrollen

ROTAFRIX® Reibringe sind das Ergebnis langjähriger Erfahrungen auf dem Gebiet der Antriebstechnik. Sie bieten mit speziellen Elastomer-Werkstoffen optimale Eigenschaften für Wälzgetriebe mit hohen Leistungen und großen Übertragungskräften.

Die Führung von Förderkörben und Fördergefäßen erfolgt vorteilhaft durch ROTAFRIX® Führungsrollen aus Vollgummi mit oder ohne nachgeschaltete Dämpfungselemente. ContiTech hat eine spezielle Ausführung entwickelt, die den Anforderungen an die Haltbarkeit auch bei hohen Fördergeschwindigkeiten bis 20 m/s (72 km/h) gerecht wird. Das ergibt leistungsfähige Elemente, die einfach im Aufbau, geräuscharm und wartungsfrei sind. Sie werden für Schachtförderanlagen im Bergbau eingesetzt.

Eigenschaften

ROTAFRIX® Produkte haben Eigenschaften, die in ihrer Kombination oft besonders wirtschaftliche Antriebslösungen ermöglichen und damit entscheidend für den Einsatz von Gummiwälzgetrieben, Trommelantrieben und Schachtförderanlagen sind.

Große Leistungsübertragung

Die hochwertige Laufflächenschicht ermöglicht durch die günstige Reibungszahl und die ggf. gute Bindung zum Metall eine große Leistungsübertragung.

Großer Wirkungsgrad

Die hohe Reibungszahl der Laufflächenschicht ergibt einen geringen Schlupf und damit einen günstigen Wirkungsgrad.

Lange Lebensdauer

Die dynamisch hochbelastbare und verschleißfeste Laufflächenschicht erlaubt lange Laufzeiten.

Geräuscharmer Lauf

Der weiche und dämmende Elastomer-Belag verhindert störende Laufgeräusche.

Geringer Raumbedarf

Die kompakte Bauweise von Reibrädern, Reibringen und Führungsrollen erlaubt Antriebe mit kleinem Bauraum und geringem Gewicht.

Problemloser Einbau

Konstruktion und Montage von ROTAFRIX® Produkten sind unkompliziert und erfordern keinen besonderen Aufwand.

Leichte Montage

Die konische Fußausführung von Reibringen und Führungsrollen ermöglicht die leichte und problemlose Montage vor Ort.

Wartungsfreier Betrieb

Alle ROTAFRIX® Produkte sind wartungsfrei.

Niedrige Lagerbelastung

Bei Anwendung des Prinzips der proportionalen Anpressung ergeben sich niedrigere Achs- und Lagerbelastungen.

Lieferprogramm

Ein sorgfältig abgestuftes Standardprogramm erlaubt kurzfristige Lieferungen ab Lager. Sondergrößen sind auf Anfrage erhältlich.

Aufbau Reibräder

ROTAFRIX® Reibräder bestehen aus

- Laufflächenschicht
- Metallkörper

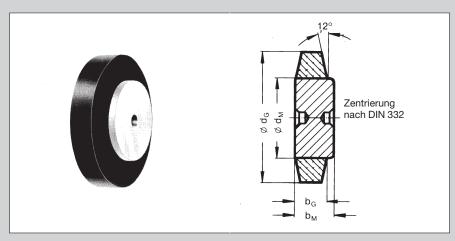


Abb.1

ROTAFRIX® Reibrad Standardausführung

Laufflächenschicht

Die Laufflächenschicht ist mit Ihren Eigenschaften auf die besonderen Eigenschaften von Reibrädern abgestimmt. ROTAFRIX® Reibräder sind in folgender Ausführung lieferbar (Lieferbedingungen und Abnahmemengen für Sonderausführungen erhalten sie auf Anfrage):

Polychloroprenkautschuk Härte 80 Shore A zulässige Reibbelagtemperatur -30°C bis +70°C verschleißfest und weitgehend ölbeständig

Metallkörper

Der Metallkörper ist aus handelsüblichem Automatenstahl 9 S 20 K hergestellt. Für die nachträgliche Bearbeitung sind Zentrierbohrungen vorhanden. Der Metallkörper ist einseitig breiter als der Reibbelag, damit das Wälzrad einfach aufzuspannen ist.

Bezeichnung

ROTAFRIX® Reibräder werden durch folgende Daten bezeichnet

- Reibrad-Außendurchmesser d_G in mm
- ▶ Breite der Laufflächenschicht b_G in mm
- lacktriangle Metallkörper-Durchmesser d_M in mm

Beispiel

ROTAFRIX® Reibrad 80/20 - 50

80 _____ Reibrad-Außendurchmesser d_G in mm

20 _____ Breite der Laufflächenschicht b_G in mm

50 _____ Metallkörper-Durchmesser d_M in mm

Alternativ kann auch die Formnummer gemäß dieser Unterlage verwendet werden.

Toleranzen

Die Toleranz der Elastomerhärte beträgt 80 \pm 5 Shore A.

Die Laufflächenschicht von ROTAFRIX® Reibrädern ist gemäß ISO 3302 M3 toleriert. Die Metallkörper sind gemäß ISO 2767 - m toleriert.

Lieferprogramm

Das Standardprogramm umfasst die in Tabelle 1 aufgeführten Abmessungen in der im Abschnitt "Aufbau" beschriebenen Ausführung. Sie sind nach Reihe 20 DIN 323 genormt und ab Lager lieferbar.

Programm (Maße in mm)									
Form Nr.	Bezeichnung	Reibbelag Maße	Metallteil-Maße						
		Außen Ø	Breite	Außen Ø	Breite				
		d_{G}	b _G	d _M	b _M				
31674	40/10- 25	40	10	25	13				
31675	45/11- 28	45	11	28	14				
31555	50/12- 32	50	12	32	16				
31676	56/14- 35	56	14	35	18				
31605	63/16- 40	63	16	40	20				
31677	71/18- 45	71	18	45	22				
31606	80/20- 50	80	20	50	25				
31678	90/22- 55	90	22	55	27				
31642	100/25- 65	100	25	65	30				
31643	112/28- 70	112	28	70	33				
31644	125/32- 80	125	32	80	37				
31645	140/36- 90	140	36	90	41				
31679	160/40-100	160	40	100	45				

Aufbau Reibringe und Führungsrollen

ROTAFRIX® Reibringe und Führungsrollen bestehen aus

- Laufflächenschicht
- Bodenschicht
- Festigkeitsträger

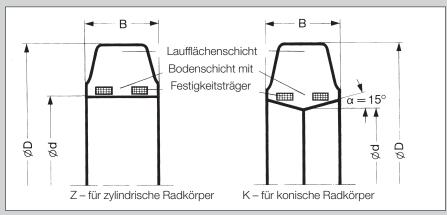


Abb. 2 ROTAFRIX® Reibringe

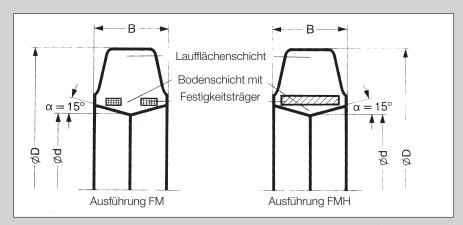


Abb. 3 ROTAFRIX® Führungsrollen

Laufflächenschicht

Die Laufflächenschicht ist mit ihren Eigenschaften auf die besonderen Anforderungen abgestimmt. Entsprechend können hierfür wahlweise jeweils 2 abriebfeste Ausführungen geliefert werden:

Reibringe:

RM

Naturkautschuk-Basis, Härte 73 Shore A zulässige Umgebungstemperatur -30 bis +70°C ab 30°C mit reduzierter Anpresskraft

RS

Polychloroprenkautschuk-Basis, Härte 83 Shore A zulässige Umgebungstemperatur -30 bis +90°C ab 50°C mit reduzierter Anpresskraft weitgehend beständig gegen viele technische Öle und Fette

Führungsrollen:

FM

Naturkautschuk-Basis, Härte 67 Shore A geeignet für Geschwindigkeiten bis 14 m/s (50 km/h)

FMH

Naturkautschuk-Basis, Härte 67 Shore A geeignet für Geschwindigkeiten bis 20 m/s (72 km/h)

Diese Ausführung wurde von der Versuchsgrubengesellschaft mbH, Tremoniastraße 13, 44137 Dortmund, getestet und als "empfehlenswert" eingestuft (Untersuchungsbericht vom 20.9.76 La/sf).

Bodenschicht

Die Bodenschicht besteht aus einem speziellen harten Elastomer-Werkstoff. Sie ist durch Vulkanisation fest mit der Laufflächenschicht verbunden und enthält den Festigkeitsträger. Die Bodenschicht wird sowohl für zylindrische als auch konische Radkörperausführungen hergestellt (Kurzzeichen für zylindrische Fußausführung z, Kurzzeichen für konische Fußausführung k).

Festigkeitsträger

Reibringe:

Der Festigkeitsträger besteht aus Stahldrahtarmierungen. Sie halten den Reibring unter stetiger Spannung und verleihen ihm einen besonders festen Sitz auf dem Radkörper.

Führungsrollen:

Der Festigkeitsträger hält die Führungsrolle unter stetiger Spannung und verleiht ihr einen besonders festen Sitz auf dem Radkörper. Bei der Ausführung FM besteht der Festigkeitsträger aus Stahldrahtarmierungen, bei der Ausführung FMH ist der Festigkeitsträger ein Stahlring.

Bezeichnung

ROTAFRIX® Reibringe und Führungsrollen werden durch folgende Daten bezeichnet:

- ▶ Außendurchmesser D in mm
- ▶ Breite B in mm
- Radkörper-Durchmesser d in mm
- ► Kurzzeichen für die Fußausführung
- Ausführung für die Laufflächenschicht

Reibringe werden nach DIN 7845 bezeichnet

Beispiel

ROTAFRIX® Reibring 200/50-140 z, RM

200 _____ 200 mm Reibring-Außendurchmesser

50 _____ 50 mm Reibring-Breite

140 _____ 140 mm Radkörper-Durchmesser

z _____ Fußausführung für zylindrische Radkörper

RM _____ Ausführung RM für die Laufflächenschicht

Zur Unterscheidung von Elastic-Bandagen für Industriefahrzeuge sind ROTAFRIX® Reibringe und Führungsrollen auf der Flanke deutlich durch Gravur oder mit einer gelben Vulkanette für die Ausführung der Laufflächenschicht gekennzeichnet, um Verwechslungen mit Industrie-Vollreifen und damit Reklamationen zu vermeiden.

Toleranzen

Die Toleranzbreite der Elastomer-Härte beträgt ± 5 Shore A.

Die Maßtoleranzen sind für den Reibring- und Führungsroll-Außendurchmesser D \pm 1,5% und für die Reibring- und Führungsroll-Breite B \pm 4%.

ROTAFRIX® Reibringe und Führungsrollen können bis auf 80% ihrer Restkissenhöhe abgenutzt werden.

Die Radkörper-Toleranzen sind im Abschnitt "Radkörper", Seite 14, angegeben.

Lieferprogramm

ROTAFRIX® Reibringe und Führungsrollen werden in einem den Erfordernissen des Marktes angepassten Programm gefertigt. Die lieferbaren Größen für Reibringe sind in Tabelle 2 und die lieferbaren Größen für Führungsrollen sind in Tabelle 3 aufgeführt. Sonderausführungen auf Anfrage.

In der Tabelle sind zusammen mit den Reibring-Bezeichnungen die entsprechenden Radkörper-Maße für zylindrische und konische Radkörper aufgeführt. – Die Radkörper gehören nicht zum ContiTech-Lieferumfang.

Lieferung über den Fachhandel.

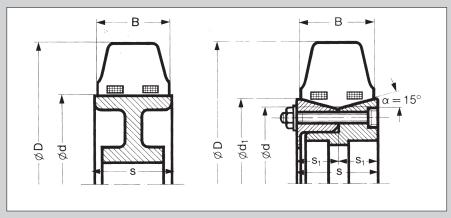


Abb. 4

ROTAFRIX® Reibringe mit Radkörpern

			Lieferp	rogramm	und Rac	lkörper-N	/Iaße Rei	bringe (N	1aße in mm	n)		Tabelle 2
Bezeichnung D/B-d	Lager	-	Radkö	rper-Maße	-		dkörper	Radkö	rper-Maße	für konis	che Radko	örper
					ahl von Rei	U						
Radkörper	Ausfüh			1	2	3	4					
	RM	RS	d	S _{min}	S _{min}	S _{min}	S _{min}	d	d ₁ ¹⁾	S _{min}	а	S ₁ ¹⁾
60/50-30 z		•	30	52								
71/60-34 z			34	63								
86/50-40 z			40	52								
85/60-40 z		•	40	63								
95/50-50 z			50	52								
95/60-50 z		•	50	63								
100/45-60 z			60	47								
125/50-75 z	•	•	75	52	110							
160/50-100 z	•	•	100	52	110							
160/50-100 k								100	113,9	52	15°	26,0
180/50-120 z	•		120	52	110							
200/50-140 z		•	140	52	110							
200/50-140 k								140	153,9	52	15°	26,0
200/75-100 z			100	78	160							
200/75-100 k								100	120,9	78	15°	39,0
230/50-170 z		•	170	52	110							
230/50-170 k								170	183,9	52	15°	26,0
230/75-120 z			120	78	160							
230/75-120 k								120	140,9	78	15°	39,0
250/60-170 z			170	63	130	190						
250/60-170 k								170	186,9	63	15°	31,5
250/75-140 z		•	140	78	160	235						
250/75-140 k								140	160,9	78	15°	39,0
280/60-190 z			190	63	130	190						
310/60-220 z	•	•	220	63	130	190						
310/60-220 k								220	236,9	63	15°	31,5
360/60-270 z	•		270	63	130	190						
360/75-270 z			270	78	160	235						
360/75-270 k								270	290,9	78	15°	39,0
400/60-305 z	•		305	63	130	190						
415/75-305 z	•		305	78	160	235						
415/75-305 k								305	325,9	78	15°	39,0
500/65-410 z			410	68	140	205						
500/85-370 z	•		370	89	180	265	354					
500/85-370 k								370	393,8	89	15°	44,5
560/100-410 z			410	104	210	312	416					
750/75-640 z		•		640	78	160	235	312				
1000/100-850 z				850	104	210	312	416				

 $^{^{1}}$) Durchmesser d $_{1}$ ist aus Winkel α und Radkörper-Breite S $_{1}$ errechnet. Breite S $_{1}$ ist ein Mindestwert. Wird S_1 überschritten, ist d_1 dem Winkel α entsprechend neu zu berechnen.

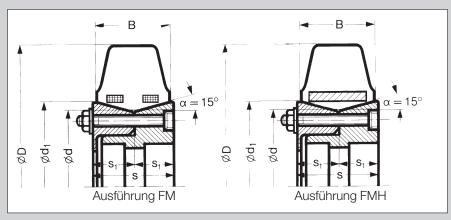


Abb. 5

ROTAFRIX® Führungsrollen mit Radkörpern

Tabelle 3 Lieferprogramm und Radkörper-Maße Führungsrollen (Maße in mm)							
Bezeichnung	Ausführung	Radkörper-Ma	аве				
D/B-d		d	d ₁ ¹⁾	S _{min}	а	S ₁ ¹)	
300/75-220 k	FM	220	240,9	78	15°	39,0	
300/75-220 k	FMH	220	240,9	78	15°	39,0	
300/85-170 k²)	FM	170	193,8	89	15°	44,5	
415/75-305 k²)	FM	220	240,9	78	15°	39,0	

 $^{^{1}}$) Durchmesser d_{1} ist aus Winkel a und Radkörper-Breite S_{1} errechnet. Breite S_{1} ist ein Mindestwert. Wird S_1 überschritten, ist d_1 dem Winkel a entsprechend neu zu berechnen.

²) Anfertigungsware

2 Montage, Bearbeitung

Montage und Bearbeitung

ROTAFRIX® sind bewährte Produkte mit hoher Lebensdauer und Betriebssicherheit. Bei richtiger Auslegung des Antriebs bzw. der Rollenführung und sachgemäßer Montage und Bearbeitung ist ROTAFRIX® wartungsfrei.

Die folgenden Hinweise helfen in der Praxis, alle Vorteile von ROTAFRIX® voll auszunutzen.

Allgemeine Hinweise

Die Achsen der treibenden und getriebenen Wellen sind parallel auszurichten.

Höhenschlag der Radkörper ist zu vermeiden. Bei mehreren nebeneinander montierten Reibringen, -rädern oder Führungsrollen ist die Welle ausreichend steif auszuführen. Abgenutzte Reibringe und Führungsrollen müssen satzweise ausgetauscht werden.

Bei Einsatzfällen, die einen möglichst schwingungsfreien Antrieb und hohe Rundlaufgenauigkeit erfordern und bei satzweise montierten Reibringen sind die Reibringe nach der Montage zu schleifen. Hierdurch werden die fertigungsbedingten Höhentoleranzen ausgeglichen und bei satzweise montierten Reibringen wird eine gleichmäßige Beanspruchung erreicht.

Die Laufflächenschicht von ROTAFRIX® Reibringen kann bis auf 80% der Reibring-Höhe, der Reibbelag von ROTAFRIX® Reibrädern bis auf minimal 0,5 * b_G fein abgedreht oder geschliffen werden. Diese Maßnahme ermöglicht es, Drehzahlverhältnisse für spezielle Einsatzfälle genau abzustimmen.

ROTAFRIX® Führungsrollen brauchen i.a. nicht geschliffen zu werden. Für besonders laufruhige Führungen ist dies jedoch zugelassen.

Einzelheiten enthält der Abschnitt "Bearbeitung".

Radkörper

körper js 12 (Tabelle 4).

Voraussetzung für den sicheren Sitz der ROTAFRIX® Reibringe und Führungsrollen ist die Verwendung von maß- und ausführungsgerechten Radkörpern.

Die Radkörper müssen die den entsprechenden ROTAFRIX® Reibringen und Führungsrollen zugeordneten Abmessungen haben (Seite 7, Tabelle 1, und Seite 11, Tabelle 2). Für die Durchmesser zylindrischer Radkörper gelten Toleranzen h 11, für konische Rad-

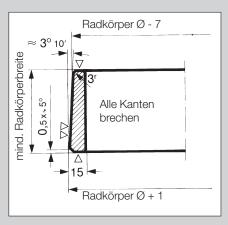
Tabelle 4		Toleranz für Radkörper-Durchmesser (Maß	Be in mm)
Radkörp	er-Durchmesser	Toleranz	
d		h 11	js 12
< 80		- 0,190	± 0,150
80 -	120	- 0,220	± 0,175
> 120 -	180	- 0,250	± 0,200
> 180 -	250	- 0,290	± 0,230
> 250 -	315	- 0,320	± 0,260
> 315 -	400	- 0,360	± 0,285
> 400 -	500	- 0,400	± 0,315
> 500 -	630	- 0,430	-
> 630		- 0,470	-

Die Oberfläche der Radkörper soll geschlichtet sein (Bearbeitungszeichen $\nabla \nabla$, Rauhtiefe R_z = 16-32 µm entsprechend R_a = 3,2-6,3 µm).

Zu raue Oberflächen verhindern das gewünschte gleichmäßige Gleiten beim Aufpressen. Die Radkörperkanten sind mit 1x 45° anzufassen. Zu große Abschrägungen, besonders bei schmalen Radkörpern, können den Radkörpersitz beeinträchtigen.

Die Radkörper müssen mindestens 4% breiter sein als die Nennbreite der Reibringe. Auf zu schmalen Radkörpern wird der Reibringfuß durch die Radkörperkanten eingeschnitten und frühzeitig zerstört. Sollen 2 Reibringe auf einen Radkörper gepresst werden, so muss die Radkörperbreite wie für 2 einzelne Reibringe bemessen werden.

Bereits gebrauchte Radkörper sind vor dem Aufpressen zu reinigen, Schlagstellen und Grat an den Radkörperkanten sind zu beseitigen.


Hinweise für die Montage von Reibringen

Reibringe mit zylindrischer Fußausführung

Reibringe mit zylindrischer Fußausführung werden mit einer hydraulischen Plattenpresse unter Vorspannung auf den zylindrischen Radkörper aufgepresst. Der Reibring ist trotz der Stahldrahtarmierung so elastisch, dass die Montage bei Beachtung der folgenden Hinweise ohne Schwierigkeiten durchgeführt werden kann.

Zusatzwerkzeuge

Für das Aufpressen werden besondere Zusatzwerkzeuge benötigt, da der Reibring nicht direkt, sondern über einen konischen Weitungsring auf den Radkörper aufgepresst wird. Um bei der Montage Verformungen zu vermeiden, wird ein zylindrischer Aufpressring eingesetzt, der den Druck gleichmäßig auf den gesamten Umfang des Reibrings verteilt und gleichzeitig ein Verkanten verhindert.

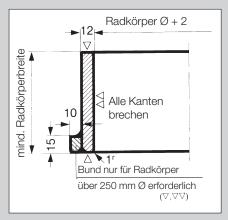


Abb. 6 Weitungsring Abb. 7 Aufpressring

Der Weitungsring ist nach Abb. 7 anzufertigen. Bei Radkörpern mit stark abgeschrägten Kanten ist für kleine und schmale Reibringe ein Weitungsring nicht erforderlich.

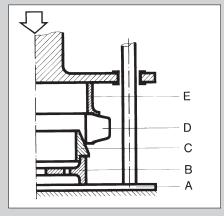
Der Aufpressring ist in Abb. 8 dargestellt. Für Radkörper über 250 mm Ø wird der Aufpressring zweckmäßig mit einem Bund versehen. Pressklötze dürfen nicht als Ersatz für den Aufpressring verwendet werden.

Weitungsring und Aufpressring dürfen entsprechend ihrer Abmessungen nur für die vorgesehene Reibring-Konstruktion verwendet werden. Anderweitiger Einsatz würde die Werkzeuge beschädigen.

Montagemittel

Zum Aufpressen von Reibringen sollte das Montagemittel TIP TOP SE Gleitmittel, Art.- Nr. 5930388, verwendet werden, welches nach Herstellerangabe mit Wasser im Verhältnis 1: 5 verdünnt wird. Das Verwenden von Ölen, Fetten oder normaler Luftreifen-Montagepaste ist unzulässig.

Aufpressen (Abb. 8)


- Radkörper (B) auf Maßhaltigkeit prüfen, entfetten und auf den Pressentisch (A) legen.
- Weitungsring (C) zentrisch auf den Radkörper aufsetzen. Wenn große Stückzahlen zu montieren sind, empfiehlt es sich, den Weitungsring am Radkörper zu zentrieren.
- Gleitflächen an Radkörper, Weitungsring und Reibring (D) gleichmäßig mit Gleitmittel-Lösung einstreichen.
- Reibring auf den Weitungsring aufsetzen.
- Aufpressring (E) zentrisch auf den Reibring legen. Hierbei ist auf planparallele Führung zu achten.
- Presse herunterfahren, bis der Reibring mittig auf dem Radkörper sitzt.

 Die Presse muss planparallel mit einer Aufpressgeschwindigkeit < 35 mm/s arbeiten. Sie ist ohne Unterbrechung kontinuierlich auszufahren.

Beim Aufpressen von 2 und mehr Reibringen auf einen Radkörper ist wie folgt zu verfahren:

- Bei 2 Reibringen: beidseitig aufpressen
- Bei 3 und 4 Reibringen: Aufpressring auf die mehrfache Reibring-Breite vergrößern und beidseitig aufpressen.

Die für das Aufpressen erforderliche Kraft richtet sich nach Durchmesser und Breite des Reibrings. Aufgepresste Reibringe sollen einige Stunden liegen, bevor das Nacharbeiten bzw. der Einbau erfolgt.

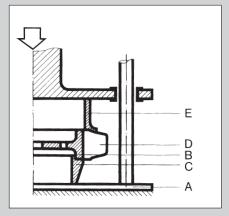


Abb. 8 Aufpressen Abb. 9 Aufpressen

Abpressen (Abb. 9)

- Weitungsring (C) auf den Pressentisch (A) legen.
- Radkörper (B) mit dem fest auf ihm sitzenden Reibring (D) zentrisch auf den Weitungsring aufsetzen.
- Aufpressring (E) zentrisch auflegen.
- Presse herunterfahren.

Beim Abpressen von 2 und mehr Reibringen von einem Radkörper ist, wie beim Aufpressen, der Aufpressring entsprechend der Reibring-Breite zu vergrößern.

Die für das Abpressen erforderliche Kraft beträgt etwa das 2- bis 3-fache der Aufpresskraft. Abgepresste Reibringe dürfen nicht wiederverwendet werden.

Reibringe und Führungsrollen mit konischer Fußausführung

Reibringe und Führungsrollen mit konischer Fußausführung werden zusammen mit zwei Radkörper-Hälften montiert. Der feste Sitz des Reibrings bzw. der Führungsrolle wird durch die Keilverspannung der Radkörper-Hälften zusammen mit dem Festigkeitsträger in der Bodenschicht des Reibrings bzw. der Führungsrolle erreicht (Seite 12, Abb. 5).

Bei der Montage ist darauf zu achten, dass der Radkörper einwandfrei ausgeführt ist und die Radkörper-Hälften nach der Montage direkt aneinander liegen.

Montierte Reibringe oder Führungsrollen sollen einige Stunden liegen, bevor das Nacharbeiten bzw. der Einbau erfolgt.

Bearbeitung von Reibringen, Reibrädern und Führungsrollen

Die Bearbeitung von Elastomer-Produkten erfordert es, einige Besonderheiten zu beachten. Die nachstehenden Hinweise haben gute Ergebnisse in der Praxis gezeigt.

Schleifen

Schleifscheibe: _ Poralun-Schleifstein, Kennzeichen "60 H mmg" (für besonders feine Oberflächen "80 H mmg"), keramisch gebunden Umfangsgeschwindigkeit: ___ Schleifstein 28 - 32 m/s Reibring 0,5 m/s Drehrichtung gegenläufig Vorschub: _ Vorschleifen 0,2 m/min Fertigschleifen 0,06 m/min Vorschleifen 2,0 mm max Zustellung: _ Fertigschleifen 0,6 mm max Kühlung: _ Luftkühlung oder mit "Adroit S" im Verhältnis 1:60 Schleifband: Körnung "80 H" Geschwindigkeit: __ __ Nach Angabe des Herstellers Zustellung: _ __ 0,3 mm Drehen

Drehmeißel: ___ Schlank angeschliffener Löffelmeißel

Umfangsgeschwindigkeit: ____ = 4 m/s

Die Teile müssen nach dem Drehen geschliffen werden.

Wichtige Hinweise

▶ Temperaturgrenzen beachten

Bei der Bearbeitung der Metallteile der Reibräder soll die Metalltemperatur 100 °C nicht übersteigen. Beim Schleifen und Drehen soll sich die Laufflächenschicht auf nicht mehr als 70° C, kurzfristig 80° C erwärmen.

- Oszillierenden Längsschliff anwenden
 - Oszillierender Längsschliff ergibt glatte Oberflächen. Stirnschliff ist zu vermeiden.
- Mit geringem Druck schleifen
 - Geringer Druck vermeidet übermäßige Erwärmung. Bei zu hohem Druck schmiert die Laufflächenschicht. Sollte sich ein Schmierfilm bilden, nicht weiter schleifen, sondern Elastomer-Belag gut abkühlen lassen. Oberfläche mit Talkum einpudern. Anschließend mit geringem Druck weiter schleifen.
- Schleifscheibe mit Pressluft ausblasen Häufigeres Ausblasen hält die Schleifscheibe sauber und gewährleistet gleichbleibende Oberflächengüte.

Lagerung, Reinigung

Allgemeine Richtlinien für Lagerung, Reinigung und Wartung von Erzeugnissen aus Kautschuk und Gummi enthält DIN 7716.

Verschmutzte ROTAFRIX® Produkte können mit einer Glyzerin-Spiritus-Mischung (1:10) gereinigt werden. Lösungsmittel, wie Benzin oder Benzol, dürfen nicht verwendet werden. Ebenso sind scharfkantige Gegenstände unzulässig.

Antriebsrad

ROTAFRIX® Reibräder werden im allgemeinen als treibende Räder eingesetzt, da ein treibendes Gummirad größere nutzbare Reibungszahlen als ein treibendes Stahlrad erzielt. Dabei sind Übersetzungen bis i = 1/7 in der Praxis möglich. Die übertragbare Leistung kann durch das Anordnen mehrerer Gummiwälzräder auf einem gemeinsamen Radkörper vervielfacht werden.

Gegenrad

Das Gegenrad muss immer etwas breiter als das Gummiwälzrad sein, um Laufflächenverletzungen und Kantenpressungen zu vermeiden. Eine möglichst geringe Oberflächenrauhigkeit des Gegenrades verbessert die Lebensdauer des Antriebes.

Temperaturbeanspruchung

Die Temperatur des Elastomer-Belages soll 70° C nicht überschreiten. Nach Einlauf des Antriebes sind kurzzeitige Spitzen bis 80° C zulässig. Dauertemperaturen über 70° C vermindern die Lebensdauer.

Berechnungsbeispiel

3 Berechnungsunterlagen

Berechnungsunterlagen

Die Berechnungsunterlagen enthalten alle zur Berechnung von Gummiwälzgetrieben notwendigen Angaben, Formeln und Tabellen. Auf Tabellen, deren Werte mit Hilfe der angegebenen Formeln leicht selbst errechnet werden können, wurde verzichtet.

Anwendung

Da die Leistungsübertragung von Anpresskraft, Übersetzung, Drehzahl und Einsatzfall abhängt, empfiehlt sich in jedem Fall eine rechnerische Überprüfung des Antriebs (siehe Kapitel "Berechnung von Gummiwälzgetrieben", Seite 22).

Reibungszahl

Die Reibungszahl μ ist eine für jede Werkstoffpaarung definierte Zahl, die das Verhältnis zwischen der übertragbaren Umfangskraft F_u und der Anpresskraft F_n .ausdrückt.

$$\mu = \frac{F_u}{F_n}$$

Für eine Werkstoffpaarung, bei der einer der beiden Werkstoffe ein Elastomer ist, gilt i. a. die Reibungszahl $\mu=0,7$. Bei Antrieben mit ruhigem und gleichmäßigen Lauf und einer der jeweiligen Umfangskraft angepassten Anpressung (Konstruktion nach dem sog. Steuerwinkel-Prinzip) kann mit einer Reibungszahl bis $\mu=0,9$ gerechnet werden. Bei Einflüssen durch Schmutz, Feuchtigkeit oder Nässe fällt die Reibungszahl je nach Einwirkung ab. In ungünstigen Fällen werden nur noch Werte zwischen $\mu=0,3...0,1$ erreicht (Tabelle 8, Seite 26).

Für die zulässige übertragbare Leistung P_{R} je Reibrad (Diagramm Abb. 15, Seite 27) wurde die Reibungszahl $\mu=0.7$ berücksichtigt.

Prinzip der proportionalen Anpressung

Die proportionale Anpressung hat den Vorteil, dass die notwendige Anpresskraft durch die wirkende Umfangskraft gesteuert wird. Das Wälzrad wird bei Teillastbetrieb nur mit der Anpresskraft belastet, die der jeweiligen Leistung entspricht. Diese Selbstregelung resultiert aus dem Prinzip der Hebel- und Keilwirkung unter Ausnutzung des Reaktionsdrehmomentes des Motorstators. Ihre Wirksamkeit ist abhängig vom Steuerwinkel ρ .

Steuerwinkel

Der Steuerwinkel ρ (Abb. 10 und 11) wird von den Verbindungslinien Wälzradmittelpunkt – Mittelpunkt des Gegenrades und Berührungspunkt von Wälzrad und Gegenrad – Schwingendrehpunkt gebildet. Bei der Festlegung des Schwingendrehpunktes muss der Drehsinn der Antriebsmaschine beachtet werden.

Bei Rechtsdrehung des Motors liegt der Schwingendrehpunkt stets links vom Mittelpunkt des Wälzrades.

Zwischen Steuerwinkel und Reibungszahl besteht der Zusammenhang.

$$\tan \rho = \mu$$

Für μ = 0,6...0,8 ist der Steuerwinkel ρ = 31°... 39° In der Praxis haben sich folgende Steuerwinkel bewährt:

ρ = 35° für Außen-Gummiwälzgetriebe

 ρ = 38° für Innen-Gummiwälzgetriebe

Gummiwälzgetriebe, die nach dem Steuerwinkel-Prinzip ausgelegt sind, gewährleisten besonders lange Standzeiten.

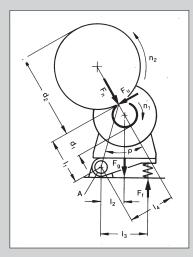


Abb.10 Steuerwinkel im Außen-Gummiwälzgetriebe

Für wechselnde Drehrichtung kann die beschriebene Konstruktion nicht angewendet werden. Für Laufrichtungswechsel ist eine Sonderkonstruktion notwendig (siehe Absatz "Zwischenwälzrad-Antrieb", Abb. 12).

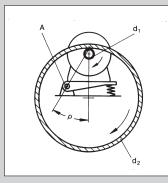


Abb. 11 Steuerwinkel im Innen-Gummiwälzgetriebe

Federkraft

Die Federkraft F_f erzeugt die Mindest-Anpresskraft, die bei Anwendung des Steuerwinkel-Prinzips auch im Leerlauf eine kraftschlüssige Mitnahme gewährleistet. Mit zunehmender Umfangskraft stellt sich dann die erforderliche Anpresskraft selbsttätig ein.

Auf das System Wippe – Motor – Wälzrad wirkt als äußere Kraft die Reaktionskraft der Umfangskraft F_{II} Daraus ergibt sich folgende Momentengleichung:

$$\Sigma\,M_A=0=F_n\cdot I_4+F_g\cdot I_2-F_u\cdot I_1-F_1\cdot I_3$$

Die erforderliche Vorspannkraft der Feder ergibt sich durch Umstellung der obigen Gleichung.

$$F_{f} = \frac{F_{n} \cdot I_{4} + F_{g} \cdot I_{2} - F_{u} \cdot I_{1}}{I_{3}}$$

Es ist wichtig, die erforderliche Federkraft zu ermitteln. Bei zu geringer Anpresskraft tritt Schlupf bereits im Leerlauf ein, das Wälzrad kann seine Funktion nicht erfüllen. Zu große Anpresskraft führt zu großer innerer Erwärmung während des Betriebes. Das Wälzrad wird zerstört.

Die zulässigen Anpresskräfte F_{max} sind in Tabelle 7 Seite 26 (Reibräder) und in Tabelle 6, Seite 25 (Reibringe) aufgeführt.

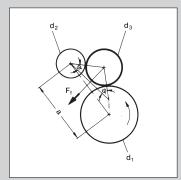


Abb. 12 Zwischenwälzrad-Antrieb

Zwischenwälzrad-Antrieb

Der Zwischenwälzrad-Antrieb (Abb. 12) wird vorteilhaft bei größeren Achsabständen angewendet. Hierbei wird ein ROTAFRIX® Reibrad oder Reibring als Zwischenwälzrad eingesetzt, wodurch allerdings der Drehsinn des treibenden und getriebenen Rades gleich wird. Der Drehsinn muss so gewählt werden, dass das Zwischenwälzrad durch die Umfangskraft zwischen die Räder gedrückt wird.

Anpresskraft, Schlupf und der damit verbundene Abrieb können in ein günstiges Verhältnis zueinander gebracht werden, wenn die Abmessungen für das Zwischenwälzrad nach folgenden Formeln berechnet werden:

$$d^{3} = \sqrt{\frac{8a^{2} - (d_{1} + d_{2})^{2} \cdot [1 + \cos(180^{\circ} - 2\phi)]^{1}}{4 \cdot [1 - \cos(180^{\circ} - 2\phi)]}} - \frac{d_{1} + d_{2}}{2}$$

Durch das Einsetzen des Winkels $\varphi = 35^{\circ}$ vereinfacht sich die Formel.

$$d^3 = \sqrt{1,490 \cdot a_2 - 0,123 \cdot (d_1 - d_2)^2 - \frac{d_1 + d_2}{2}}$$

Wenn die Durchmesser aller Räder und der Achsabstand gegeben sind, kann der Winkel nachgerechnet werden.

$$\cos{(180^{\circ}-2\phi)} = -\,\frac{4a^2-(d_3+d_1)^2-(d_3+d_2)^2}{2\cdot(d_3+d_1)\cdot(d_3+d_2)}$$

Die erforderliche Anpresskraft an den Wälzrad-Berührungspunkten kann durch eine Zugoder Druckfeder erzeugt werden. Sie soll etwa im Mittelpunkt des Zwischenwälzrades angreifen und in Richtung der Winkelhalbierenden von 180° - φ wirken.

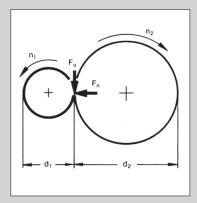


Abb. 13 Steuerwinkel im Innen-Gummiwälzgetriebe

Berechnung

Die Berechnung und Auslegung von Gummiwälzgetrieben erfolgt nach üblichen Grundsätzen und Verfahren. Für den optimalen Einsatz von ROTAFRIX® Reibringen und Reibrädern ist es notwendig, die jeweiligen Einsatzverhältnisse zu berücksichtigen. Hierfür liegen jahrzehntelange Erfahrungen vor. Daher empfiehlt es sich, bei schwierigen Einsatzfällen die Beratung durch ContiTech einzuholen. Die für eine Berechnung erforderlichen Kenndaten sind auf dem entsprechenden Datenblatt (siehe hinterer Katalogteil) zusammengestellt. Hinweise für erste konstruktive Überlegungen, z.B. über Größe und Anzahl der benötigten ROTAFRIX® Reibringe oder Reibräder, geben der Walkfaktor und die maximale Anpresskraft.

Berechnung von Gummiwälzgetrieben

Die Berechnung bezieht sich auf Gummiwälzgetriebe, die mit ROTAFRIX® Reibrädern und Reibringen ausgerüstet werden.

Formelzeichen, Einheiten, Begriffe

Formelzeichen	Einheiten	Begriffe
C ₁		_ Walkfaktor
c ₂		_ Betriebsfaktor
d ₁	_ mm	Durchmesser des treibenden Rades
d ₂	_ mm	Durchmesser des getriebenen Rades
F _n	_ N	_ Anpresskraft
F _{n erf}	_ N	erforderliche Anpresskraft
F _{n zul}	_ N	zulässige Anpresskraft
F _u	_ N	_ Umfangskraft
F _{u erf} ———	_ N	erforderliche Umfangskraft
i		_ Übersetzung
n ₁	_ min ⁻¹	Drehzahl des treibenden Rades
n ₂	_ min ⁻¹	_ Drehzahl des getriebenen Rades
P	_ W	zu übertragende Leistung
P _{eff}	_ W	einsatzbedingte zulässige Leistung
P _R	_ W	_ zulässige übertragbare Leistung je Wälzrad bei μ = 0,7
V	_ m/s	_ Umfangsgeschwindigkeit
Z		Anzahl der erforderlichen Wälzräder
μ		- Reibungszahl

Walkfaktor c₁

Der Walkfaktor c_1 berücksichtigt die Übersetzung. Die maximalen Anpresskräfte F_{max} gelten nur für den Lauf des Wälzrades gegen eine ebene Platte (Durchmesser des Gegenrades = ∞). In allen anderen Fällen ist die maximale Anpresskraft F_{max} mit dem Walkfaktor zu korrigieren. Der Walkfaktor c_1 errechnet sich nach der folgenden Formel:

$$c_1 = \frac{1}{\sqrt[3]{1 + \frac{d_1}{d_2}}}$$

Der Walkfaktor c_1 kann auch dem Diagramm Abb. 14 entnommen werden. Bei Innen-Wälzgetrieben kann wegen der großen Überdeckung c_1 = 1 angenommen werden.

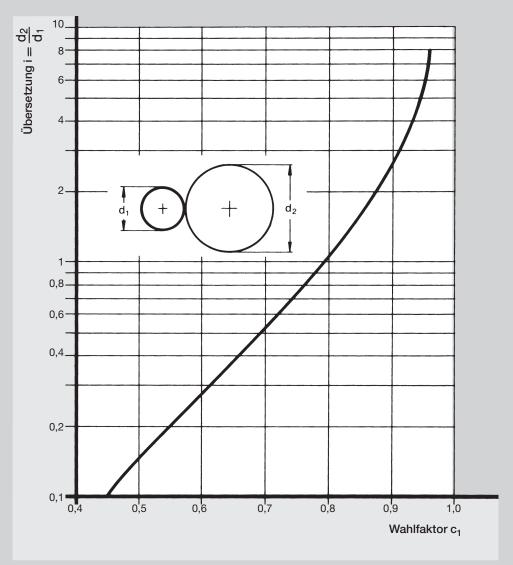


Abb. 14

- d_1 Durchmesser des ROTAFRIX® Reibrings / Reibrades
- $\ensuremath{\mathrm{d}}_2$ Durchmesser des Gegenrades oder der Trommel.

Betriebsfaktor c2

Der Betriebsfaktor \mathbf{c}_2 berücksichtigt tägliche Betriebsdauer, Schalthäufigkeit und Anlaufmomente.

Tabelle 5	Betriebsfakto	or c ₂						
Schalthäufigkeit	Schalthäufigkeit Ohne Stoßbelastung Tägliche Betriebsdauer in h					Mit Stoßbelastung und starker Anlaufüberhöhung Tägliche Betriebsdauer in		
	bis 10	über 10 bis 16	über 16	bis 10	über 10 bis 16	über 16		
Kontinuierlicher Lauf	1,0	1,1	1,2	1,1	1,2	1,3		
Geringe Schalthäufigkeit	1,1	1,2	1,3	1,2	1,3	1,4		
Mittlere Schalthäufigkeit	1,2	1,3	1,4	1,4	1,5	1,6		
hohe Schalthäufigkeit	1,3	1,4	1,5	1,6	1,7	1,8		

Übersetzung i

Die Übersetzung i ist das Verhältnis der Drehzahlen n_1 zu n_2 oder der Raddurchmesser d_2 zu d_1 .

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$

Umfangsgeschwindigkeit v

Die Umfangsgeschwindigkeit v ergibt sich aus dem Durchmesser d und der Drehzahl n des Rades.

$$v = \frac{\pi \cdot d \cdot n}{60 \cdot 10^3}$$

v in m/s

d in mm

n in min-1

Die Umfangsgeschwindigkeit des Wälzrades soll v = 25 m/s nicht überschreiten.

Umfangskraft F_{II}

Die Umfangskraft $F_{\rm u}$ wird durch die zu übertragende Leistung P und die Umfangsgeschwindigkeit v bestimmt.

$$F_u = \frac{P}{V}$$

 F_u in N

P in W

v in m/s

Anpresskraft F_n

Die Anpresskraft F_n ist wie bei allen kraftschlüssigen Antrieben entscheidend für die Leistungsfähigkeit und Lebensdauer eines Antriebs.

- OZu geringe Anpresskraft ergibt mangelnde Leistungsübertragung, ungenügenden Wirkungsgrad und frühe Wälzradzerstörung durch Schlupf.
- Zu große Anpresskraft führt zu verstärkter Walkarbeit, erhöhter Beanspruchung und vorzeitiger Wälzradzerstörung durch zu hohe innere Erwärmung.

Die Anpresskraft F_n ist abhängig von der Umfangskraft F_u und der Reibungszahl μ .

$$F_n = \frac{F_u}{\mu}$$
 (μ nach Tabelle 8, Seite 26)

Die maximalen Anpresskräfte F_{max} sind in Tabelle 6 und 7 aufgeführt.

Für die Berechnung des Antriebs wird die zulässige Anpresskraft F_{zul} zugrunde gelegt. Sie berücksichtigt sowohl den Walkfaktor c_1 als auch die sonstigen Antriebs- und Umgebungsbedingungen.

Maximale Anpresskraft F_{max} in N für Reibringe

Tabelle 6

ROTAFRIX® Reibring	Drehz	zahl n (mi	in-1)											
D/B-d	4	6,3	10	16	25	40	63	100	160	250	400	630	1000	1600
60/50-30								400	360	320	270	210	150	90
71/60-34								800	690	590	490	390	280	120
86/50-40								850	430	370	280	200	140	90
85/60-40								850	730	610	490	390	280	150
95/50-50						560	520	490	420	340	250	170	120	70
95/60-50						820	760	700	600	480	360	250	170	90
100/45-60						910	840	780	650	530	380	270	190	110
125/50-75						1120	1020	940	800	660	500	330	200	120
160/50-100						2100	1830	1550	1250	940	640	420	260	150
180/50-120						2500	2170	1850	1460	1080	730	480	300	160
200/50-140				3520	3220	2900	2520	2150	1680	1220	820	540	340	180
200/75-100				6050	5500	4900	4150	3550	2750	1950	1320	850	550	320
230/50-170				4850	4500	4000	3400	2850	2100	1500	1050	650	400	200
230/75-120				7000	6300	5750	4850	4100	3100	2150	1500	950	550	350
250/60-170				6550	5850	5300	4500	3700	2750	1900	1300	850	500	320
250/75-140				7900	7100	635	5400	4450	3300	2200	1450	950	600	350
280/60-190				7300	6700	6150	5000	4150	3050	2000	1350	850	550	320
310/60-220				8500	7350	6450	5350	4350	3150	2100	1400	850	550	320
360/60-270				9300	8000	7000	5700	4500	3200	2000	1300	850	550	320
360/75-270				11300	9500	8400	6800	5300	3800	2500	1500	950	640	
400/60-305				11200	9600	8300	6500	4800	3300	2300	1550	950	550	
415/75-305				11200	9750	8700	6850	5350	3600	2500	1700	1050	600	
500/65-410			13500	11500	10300	8800	6800	4850	3250	2150	1320	820	500	
500/85-370			15000	13600	12000	9900	7700	5650	3800	2600	1700	1000	600	
560/100-410	19000	18050	17300	15050	13100	10300	7700	5700	3950	2550	1700	1000		
750/75-640	18000	17300	16400	13900	11500	9000	6400	4400	2800	1850	1100			
1000/100-850	19000	18200	17000	14400	11850	8800	6200	4100	2650	1650	850			

Tabelle 7		Ž	Zulässig	je Anpre	sskraft	F _{max} in	N für Re	ibräder					
ROTAFRIX [®] Reibrad ¹)	Drehzał	Orehzahl n (min ⁻¹)									1		
	1002)	200	300	500	700	950	1200	1450	1800	2850	4000	6000	10000
40/10 - 25	157	147	137	118	103	86	75	64	57	40	32	23	16
45/11 - 28	196	183	172	147	124	100	87	75	67	46	37	26	19
50/12 - 32	255	235	216	177	149	111	95	85	76	52	43	30	
56/14 - 35	304	280	255	211	180	148	126	107	95	66	54	37	
63/16 - 40	412	363	319	255	213	174	150	129	115	81	66	45	
71/18 - 45	540	461	392	299	248	205	179	157	140	95	77	54	
80/20 - 50	677	559	476	353	287	240	210	182	161	110	89	62	
90/22 - 55	873	697	559	425	349	270	242	209	185	129	104		
100/25 - 65	1030	814	667	496	404	324	278	238	211	146	118		
112/28 - 70	1295	981	785	589	471	382	328	280	248	168	135		
125/32 - 80	1717	1275	981	701	564	452	387	330	293	204	165		
140/36 - 90	2364	1619	1226	883	687	548	446	393	347	241			
160/40 - 100	2820	2020	1720	1240	956	750	639	542	480	329			
v (m/s)				5	i	10)	1:	5 2	20	25		

Reibungszahl µ

Die Reibungszahl μ ist von Werkstoffpaarung und Umgebungseinflüssen, wie Nässe und Schmutz, abhängig (siehe auch Abschnitt "Anwendung", Seite 20).

Tabelle 8	Reibungszahl μ		
Reibungszahl μ	Umgebungs- einfluss	Oberfläche	Anwendung (Beispiele)
0,9 - 0,7	trocken	$\nabla\nabla\nabla$	Feinwerktechnik
0,7 - 0,5	feucht		bis Maschinenbau
0,7 - 0,5	trocken	$\nabla\nabla$	Feinwerktechnik
0,5 - 0,3	feucht		bis Maschinenbau
0,5 - 0,3	trocken	∇	Antriebe unter
0,3 - 0,1	feucht bis nass		ungünstigen Bedingungen

Einsatzbedingte zulässige Leistung P_{eff}

Die einsatzbedingte zulässige Leistung P_{eff} ist die zulässige übertragbare Leistung P_{R} , korrigiert mit dem Walkfaktor c_1 , dem Betriebsfaktor c_2 , und der Reibungszahl μ .

$$P_{eff} = \frac{P_R \cdot c_1 \cdot \mu}{c_2 \cdot 0.7}$$

Anzahl z der erforderlichen Wälzräder

Die erforderliche Anzahl z der Wälzräder ergibt sich aus der zu übertragenden Leistung P und der einsatzbedingten zulässigen Leistung $P_{\rm eff}$.

$$z = \frac{P}{P_{eff}} = \frac{P \cdot c_2 \cdot \mu}{P_R \cdot c_1 \cdot 0.7}$$

Zulässige übertragbare Leistung P_R je Reibrad

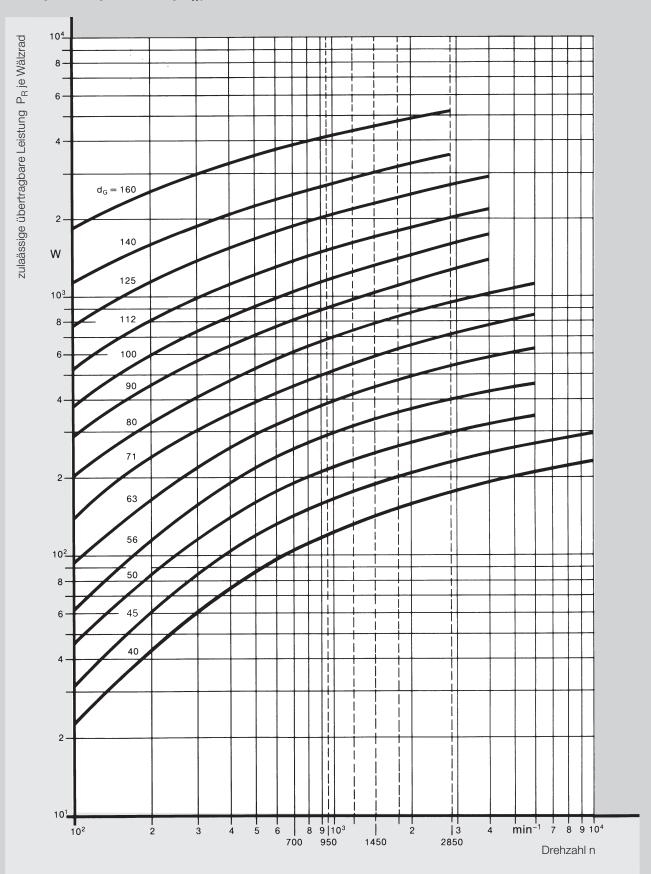
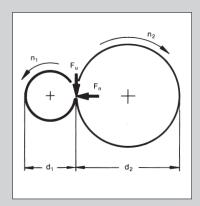



Abb. 15

Berechnungsbeispiel Gummiwälzgetriebe

Antriebsmaschine: E-Motor P =150 W

 $n_1 = 2850 \text{ min}^{-1}$

Arbeitsmaschine: Druckereimaschine $n_2 = 800 \text{ min}^{-1}$

Betriebsbedingungen: Reibrad auf der Motorwelle.

Vorgegebener Durchmesser d₁ = 40 mm. Der Antrieb wird häufig ein- und ausgeschaltet

und läuft in einer Schicht.

Betriebsfaktor

c₂ aus Tabelle 5, Seite 24

$$c_2 = 1,6$$

Übersetzung

$$i = \frac{n_1}{n_2} = \frac{d_2}{d_1}$$

$$i = \frac{2850}{800} = 3,56$$

Durchmesser des Gegenrades

$$d_2 = i \cdot d_1$$

$$d_2 = 3,56 \cdot 40 = 142,4 \text{ mm}$$

Walkfaktor

$$c_1 = \frac{1}{\sqrt[3]{1 + \frac{d_1}{d_2}}}$$

$$c_1 = \frac{1}{\sqrt[3]{1 + \frac{40}{142,5}}} = 0,92$$

Umfangsgeschwindigkeit

$$v = \frac{\pi \cdot d \cdot n}{60 \cdot 10^3}$$

$$v = \frac{\pi \cdot 40 \cdot 2850}{60 \cdot 10^3} = 5,97 \text{ m/s}$$

Umfangskraft

$$F_{u \text{ erf}} = \frac{P}{v}$$

$$F_{u \text{ erf}} = \frac{150}{5,97} = 25,1 \text{ N}$$

Anpresskraft

$$F_{n \; erf} = \frac{F_{u \; erf}}{\mu}$$

 $\boldsymbol{\mu}$ aus Tabelle 8, Seite 26

F_{max} aus Tabelle

6/7, Seite 25/26

 $F_{max} > F_{n erf}$

$$F_{n \text{ erf}} = \frac{25,1}{0,7} \approx 35,9 \text{ N}$$

$$\mu = 0.7$$

$$F_{\text{max}} = 40 \text{ N}$$

für ROTAFRIX® Reibrad 40/10-25

 $F_{max} = 40 \text{ N} > F_{n \text{ erf}} = 36 \text{ N}$

Zulässige

übertragbare Leistung

P_R aus Diagramm Tabelle 15, Seite 29

$$P_{R} = 167 \text{ W}$$

für
$$\mu = 0.7$$

alternativ
$$P_R = F_{max} \cdot \mu \cdot V$$

Einsatzbedingte zulässige Leistung

$$P_{eff} = \frac{P_R \cdot c_1 \cdot \mu}{c_2 \cdot 0.7}$$

$$P_{eff} = \frac{167 \cdot 0.92 \cdot 0.7}{1.6 \cdot 0.7} = 96 \text{ W}$$

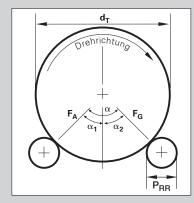
Anzahl der erforderlichen Wälzräder

$$z = \frac{P}{P_{eff}} = \frac{P \cdot c_2 \cdot \mu}{P_R \cdot c_1 \cdot 0.7} \qquad z = \frac{150 \cdot 1.6 \cdot 0.7}{167 \cdot 0.92 \cdot 0.7} = 1.56$$

$$z = \frac{150 \cdot 1,6 \cdot 0,7}{167 \cdot 0.92 \cdot 0.7} = 1,56$$

Auslegung: 2 ROTAFRIX® Reibräder 40/10-25 Form-Nr. 31674

Durch den Einsatz von 2 ROTAFRIX® Reibrädern ist der Antrieb zwangsläufig überdimensioniert. Um diese Leistungsreserve für die Lebensdauer des Antriebes in vollem Umfang nutzen zu können, muss bei starrer Anpressung die erforderliche Anpresskraft nachgerechnet werden.


Bei Anwendung des Steuerwinkel-Prinzips erübrigt sich diese Nachrechnung, da sich die erforderliche Anpresskraft selbsttätig optimal einstellt. Eine Korrektur der erforderlichen Federkraft für die Anpressung im Leerlauf ist empfehlenswert.

Nachrechnung der erforderlichen Anpresskraft bei starrer Anpressung

$$F_{n \text{ erf}} = \frac{P \cdot c_2}{v \cdot \mu \cdot z \cdot c_1}$$

$$P_{eff} = \frac{150 \cdot 1,6}{5,97 \cdot 0,7 \cdot 2 \cdot 0,92} = 31,2 \text{ N}$$

Diese Anpresskraft ist bei starrer Anpressung für 1 Wälzrad erforderlich, entsprechend für 2 Wälzräder 62,4 N.

Berechnungsbeispiel Trommelantrieb

Antriebsmaschine: E-Motor P = 110 kW

 $n = 74 \text{ min}^{-1}$

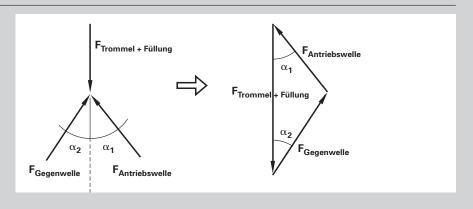
Arbeitsmaschine: Rohrmühle

Betriebsbedingungen: keine Stoßbelastung geringe Schalthäufigkeit

Betriebsdauer ca. 12 Std/Tag

Oberfläche der Laufbahn: Trocken, ▽▽

Antriebswelle: 20 Stück 560/100/-410z, RM Gegenwelle: 16 Stück 560/100-410z, RM


Trommeldurchmesser d_T: 1645 mm

Trommelgewicht + Gewicht

der Füllung = $G_T + G_F$: 20700 kg Winkel zur Antriebswelle α_1 : 38° Winkel zur Gegenwelle α_2 : 32,8°

Berechnung der wirkenden Kräfte

Die folgende Berechnung basiert auf den rechts abgebildeten Zusammenhängen und den entsprechenden Gesetzen der Mechanik.

Masse der Trommel

$$F_T = (G_T + G_F) \cdot 9,81$$

$$F_T = 20,700 \cdot 9,81 = 203,067 \text{ N}$$

Anpresskraft auf Antriebswelle

$$F_{A} = \frac{F_{T}}{\frac{\sin \alpha_{1} \cdot \cos \alpha_{2}}{\sin \alpha_{2}} + \cos \alpha_{1}}$$

$$F_{A} = \frac{203,067}{\frac{\sin 38 \cdot \cos 32,8}{\sin 32,8} + \cos 38}$$

Anpresskraft auf Gegenwelle

$$F_G = F_A \cdot \frac{\sin \, \alpha_1}{\sin \, \alpha_2}$$

$$F_G = 116,457 \cdot \frac{\sin 38}{\sin 32,8} = 132,392 \text{ N}$$

Umfangsgeschwindigkeit

$$v = \frac{\pi \cdot d_{RR} \cdot n}{60 \cdot 10^3}$$

$$v = \frac{\pi \cdot 560 \cdot 74}{60 \cdot 10^3}$$
 $v = 2,17 \text{ m/s}$

Umfangskraft

$$F_u = \frac{P}{v}$$

$$F_u = \frac{110}{2,17} = 50,696 \text{ N}$$

Überprüfung der Reibringe auf maximale Belastung

Belastung pro Ring

$$F_{Ring} = \frac{F}{Anzahl der}$$
Ringe

$$F_{A, Ring} = \frac{116,457}{20} = 5,823 \text{ N}$$

$$F_{G, Ring} = \frac{132,392}{16} = 5,823 \text{ N}$$

Berechnung der benötigten Anpresskraft zur Übertragung der Leistung

Walkfaktor c₁

$$c_1 = \frac{1}{\sqrt[3]{1 + \frac{d_{RR}}{d_T}}}$$

$$c_1 = \frac{1}{\sqrt[3]{1 + \frac{560}{1,645}}} = 0,907$$

Betriebsfaktor c₂ gemäß Tabelle 5, Seite 24

$$c_2 = 1,2$$

Reibzahl µ gemäß Tabelle 8, Seite 26

$$\mu = 0.7$$

Benötigte Anpresskraft

$$F_N = \frac{F_u \cdot c_2}{\mu \cdot c_1}$$

$$F_{N, ges} = \frac{50,696 \cdot 1,2}{0,7 \cdot 0,907} = 95,819 \text{ N}$$

Da die benötigte Anpresskraft kleiner als die vorhandene Anpresskraft ist, besteht hier kein Handlungsbedarf.

$$F_{N, ges} = 95,819$$

$$F_A = 116,457 \text{ N}$$

Nun gilt es, die Belastungen der einzelnen Ringe zu überprüfen:

Die maximal zulässige Anpresskraft für die vorhandenen Ringe 560/100-410 beträgt bei 74 min⁻¹ Umdrehungen gemäß Tabelle 6 Seite 25 ca. 7000N (Wert ermittelt mit Hilfe von linearer Interpolation). Die tatsächliche Belastung pro Ring beträgt wie oben berechnet nur 5.823N. Daher ist diese Konfiguration zulässig.

Für die Gegenwelle mit 16 Ringen ergibt sich wie oben berechnet eine Belastung pro Ring von 8,275.

Diese Belastung ist höher als die erlaubten ca. 7,000N, daher wird empfohlen, die Anzahl der hier eingesetzten Reibringe ebenfalls auf 20 zu erhöhen.

$$\mathsf{F}_{\mathsf{G},\;\mathsf{Ring},\;\mathsf{korr}} = \frac{\mathsf{F}_{\mathsf{G}}}{\mathsf{Anzahl}\;\mathsf{der}}$$
 Ringe

$$F_{G, Ring, korr} = \frac{132,392}{20} = 6,620 \text{ N}$$

Contilan® Rollen

Unter dem Warenzeichen Contilan® werden hochwertige Polyurethane zu Bandagen, Rollen und Rädern verarbeitet. Contilan® ist ein besonders abriebfester Werkstoff mit höchster Strukturfestigkeit.

Verwendungszweck

Contilan® Bandagen, Rollen und Räder finden vorwiegend an Hubwagen, Elektrostaplern, Schubmaststaplern, Komissionierern, etc. mit Geschwindigkeiten bis 16 km/h, insbesondere bei hohen Lasten mit niedrigem Schwerpunkt für Einsätze auf befestigten, ebenen Fahrbahnen ihren Einsatz.

Eigenschaften

- Hohe Tragfähigkeit bei kleinen Abmessungen
- Besonders abriebfest bei höchster Strukturfestigkeit, daher hohe Lebensdauer
- Geringe Einfederung, daher hohe Standsicherheit
- Pannensicher, defektunempfindlich
- Wartungsfrei
- Nicht kreidend, auch auf empfindlichen Fußböden
- Beständig gegen Öle, Fette und Treibstoffe. Aufgrund ihrer chemischen Zusammensetzung nur empfindlich gegen bestimmte Medien (z.B. Säuren, Lauge, Amine, Phenole und Wasserdampf)

Eigenschaften des Materials							
Mechanische Eigenschaften		1					
Shore Härte A		DIN 53 505	93°				
Dichte	g/cm ³	DIN 53 479	1,27				
Zugfestigkeit	N/mm ²	DIN 53 504	40				
Bruchdehnung		DIN 53 455					
		DIN 53 504	500				
Elastizitätsmodul	N/mm ²	DIN 53 457	~ 80				
Spannungswert DIN 53 504	N/mm ²	20% Dehnung	7				
		300% Dehnung	17,5				
Weiterreißfestigkeit (Graves)	N/mm	DIN 53 515	70				
Stoßelastizität	%	DIN 53 512	45				
Reibungskoeffizient		Stahl geschliffen: trocken	0,15 – 0,20				
		Stahl geschliffen: nass	0,05 – 0,15				
Abriebfestigkeit	mm ³	DIN 53 516	50				
Nadelausreißfestigkeit	N/mm	DIN 53 506	110				
		ı					
Thermische Eigenschaften							
Gebrauchstemperatur	°C	max. kurzzeitig	+130				
		max. dauernd	-20/+80				
Schmelztemperatur	°C		> 200				
lineare Wärmedehnzahl	K ⁻¹ * 10 ⁻⁶	VDE 0304 Part 1	190				
Wärmeleitzahl	W/mK	nach Erk	0,29				
Spezifische Wärme	kJ/kg K		1,89				

Die Angaben in der Tabelle resultieren aus eigenen Testergebnissen, Empfehlungen unserer Grundstofflieferanten sowie Erfahrungsberichten unserer Kunden. Trotzdem können die Angaben nur der Orientierung dienen. Sie sind nicht ohne weiteres auf alle Betriebsverhältnisse übertragbar.

Lieferbare Größen und Ausführungen erhalten sie auf Anfrage.

33

IVI		Standzeiten	20
		Steuerwinkel	20
Maßangaben	7	Steuerwinkel-Prinzip	20, 21, 29
Metallteil	6, 7, 17	Stirnschliff	17
Metalltemperatur	17		
Mitnahme, kraftschlüssige	· <u></u> 21	Т	
Montage	5, 13, 14, 15		
		Talkum	17
N		Teillastbetrieb	20
		Temperatur	18
Nässe	20, 26	-beanspruchung	18
		-grenzen	17
0			
		U	
Oberfläche	14, 17, 26, 30		
Oberflächengüte	17	Überrollungen	24
Oberflächenrauhigkeit	18	Übersetzung	18, 20, 22, 23,
ölbeständig, weitgehend-	_ 6		24, 28
		Umfangskraft	4, 20, 21, 22, 24,
Р			25, 28, 31
		übertragbare	20
Poralun-Schleifstein	17	Umfangsgeschwindigkeit .	17, 22, 24, 28, 30
		Umgebungseinflüsse	26
R			
		V	
Radbelastung	4		
Radkörper	14	verschleißfest	
Raddurchmesser	24	Vorschleifen	17
Raumbedarf	5	Vorschub	17
Reibbelag	6, 7	Vorspannkraft	21
Reibbelag-Höhe			
Reibkraft		W	
Reibrad	6, 21, 26, 27, 28		
Reibschluss		Walkarbeit	
Reibungszahl		Walkfaktor	
nutzbare		Wälzrad	4, 6, 20, 21, 22,
Rundlaufgenauigkeit	14		27, 29
		Wälzradzerstörung	
S		wartungsfrei	
		Wellen	
Schalthäufigkeit		getriebene	
Schleifband		treibende	
Schleifen		Werkstoffpaarung	
Schleifscheibe		Wirtschaftlichkeit	4
Schlupf		_	
Schmierfilm		Z	
schmieren		7	
Schmutz		Zentrierung	
Selbstregelung		Zugfeder	
Serieneinsatz		Zustellung	
Sonderabmessungen		Zwischenwälzrad	21, 24
-ausführungen			
Stahlrad, treibendes Standardausführung			
Standardadsturifung	0, 14		

			Firma				
			Name				
			Abteilung				
CantiTaala							
ContiTech Vibration Control GmbH Vertrieb Industrie			Straße/Postfach				
			PLZ/Ort Telefon				
Jädekamp 30			Telex				
			Telefax				
D-30419 Hannover							
Germany				+ F _u	+ d ₂ -	n ₂	
Antriebsberechnung für							
	O Versuch		O Bedarf		O Stück/Jah	r	
O Neukonstruktion							
O bestehender Antrieb - bisher ausg	elegt mit:						
O bestehender Antrieb - bisher ausg	jelegt mit:						
O bestehender Antrieb - bisher ausg			Ade item a seleju				
O bestehender Antrieb - bisher ausg Antriebsdaten	Antriebsmaschin		Arbeitsmaschine		euamaschine	. Ventilato	1)
O bestehender Antrieb - bisher ausg Antriebsdaten	Antriebsmaschin	ne or, Verbrennungs			eugmaschine	, Ventilato)
O bestehender Antrieb - bisher ausg Antriebsdaten Art	Antriebsmaschin				eugmaschine	, Ventilato	r) min-1
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl	Antriebsmaschin (z. b. Elektromot	or, Verbrennungs	smotor)	(z. B. Werkze	kW F	, Ventilato	min-1 kW
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl	Antriebsmaschin (z. b. Elektromot	or, Verbrennungs	smotor) min-1	(z. B. Werkze	kW F		min-1
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung	Antriebsmaschin (z. b. Elektromot n¹ P Anlaufcharakteris (z. B. Anlaufmon	or, Verbrennungs	min-1 kW	n ² P Art der Belas	kW F		min-1 kW gleichförmig ungleichförmig stoßartig
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe	Antriebsmaschin (z. b. Elektromot n¹ P Anlaufcharakteris	or, Verbrennungs	smotor) min-1	(z. B. Werkze	kW F	o max	min-1 kW gleichförmig ungleichförmig
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon	stik nent, Anlaufart)	min-1 kW	(z. B. Werkze n² P Art der Belas d₂	kW F	o max	min-1 kW gleichförmig ungleichförmig stoßartig
	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon	stik nent, Anlaufart) mm to	min-1 kW	(z. B. Werkze n² P Art der Belas d₂	kW F	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite Übersetzung i	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon d ₁ von	stik nent, Anlaufart) mm to	min-1 kW	n ² P Art der Belas d ₂ from	kW F stung: mm t	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite Übersetzung i	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon d ₁ von	stik nent, Anlaufart) mm to	min-1 kW	n ² P Art der Belas d ₂ from	kW F stung: mm t	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm
Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite Übersetzung i Achsabstand a	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon d ₁ von	stik nent, Anlaufart) mm to	min-1 kW	n ² P Art der Belas d ₂ from	kW F stung: mm to the standard amin amin amin amin amin amin amin amin	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm mm
Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite Übersetzung i Achsabstand a Anpressung des Motors	Antriebsmaschin (z. b. Elektromot n1 P Anlaufcharakteris (z. B. Anlaufmon d ₁ von	stik nent, Anlaufart) mm to	min-1 kW	(z. B. Werkze n² P Art der Belas d₂ from	kW F stung: mm to the stung and the stung a	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm mm
Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite Übersetzung i Achsabstand a Anpressung des Motors Anordnung des Wälzrades	Antriebsmaschin (z. b. Elektromot n¹ P Anlaufcharakteris (z. B. Anlaufmon d¹ von imin mm	stik nent, Anlaufart) mm to i _{max} Achsabs	min-1 kW	(z. B. Werkze n² P Art der Belas d₂ from deukonstruktion O starre Ang	kW F stung: mm to the stung and the stung a	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm mm
O bestehender Antrieb - bisher ausg Antriebsdaten Art Drehzahl Leistung Außen-Ø der Ringe Zul. Ø-Bereich bei Neukonstruktion Maximal zulässige Ringbreite	Antriebsmaschin (z. b. Elektromot n¹ P Anlaufcharakteris (z. B. Anlaufmon d¹ von imin mm	stik nent, Anlaufart) mm to i _{max} Achsabs O Außen-	min-1 kW	(z. B. Werkze n² P Art der Belas d₂ from eukonstruktion O starre Anp O Zwischen	kW F stung: mm to the stung and the stung a	o max	min-1 kW gleichförmig ungleichförmig stoßartig mm mm mm

Unterschrift und Firmenstempel

Ort, Datum

ContiTech

Vibration Control GmbH

Vertrieb Industrie

Jädekamp 30

D-30419 Hannover

Germany

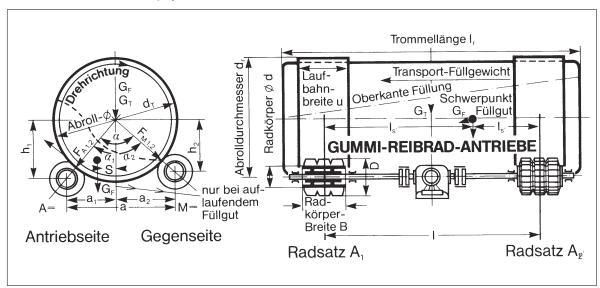
Firma

Straße/Postfach

PLZ/Ort

Telefon

Telefax


E-mail

Funktion der Trommel

Stückzahl

Einsatz bei Firma

Trommellänge I_r

Abmessungen

Abroll-Ø dr (entspricht ohne zusätzliche Laufbahn dem Trommel-Ø)					mm
Laufbahnbreite u	mm	Trommellänge Ir	mm	Abstand Mitte Radsatz I	mm
Achsabstand a	mm	a ₁	mm	a_2	mm
Öffnungswinkel a	Grad	Anstellwinkel a ₁	Grad	Anstellwinkel a ₂	Grad
Vertikaler Achsabstand zur Tron	nmelachse	h ₁	mm	h_2	mm
Trommelachse		O waagrechte Lage		O Schräglage	Grad
Schwerpunktabstand I s 1	mm	(nur bei nicht waagerechter Oberkante der Füllung)			
gewünschter Reibring-Ø D		von	mm	bis	mm

Gewichte

Eigengewicht der Trommel (einschließlich be	G_T	kg			
mögliche Anbackungen der Füllung	O nein	О ја	caGewicht	GA	kg
Gewicht der Füllung (Durchsatz)				G_F	kg
Art des Füllgutes (Material, Körnung usw.)					
(nur bei anlaufendem Füllgut) Abstand Schw	Mitte	S	mm		

Änderung der Drehrichtung О ја O nein Motorleistung P_M kW Motordrehzahl 1/min n_{M} Getriebeübersetzung erforderliche Leistung Anfahren kW im Betrieb max. $\,kW$ Trommeldrehzahl 1/min n_{T} Reibringdrehzahl n_{R} 1/min Antrieb Oberfläche der Trommellaufbahn O Walzblech roh O zusätzliches Laufbahn bearbeitet Anlage im Freien O abgedeckt O nicht abgedeckt Anlage in der Halle O staubgeschützt abgedeckt O nicht abgedeckt Laufbahntrocken O trocken O trocken + Staub O naß sauber O naß verschmutzt chemische Einflüsse welche? O nein O ja, welche °C Umgebungstemperatur (Luft) T_L Trommeloberflächentemperatur °C T_{O} °C Temperatur der Füllung T_F Laufzeit pro Tag max. h min. h Einschaltungen pro Tag O ruhig, gleichmäßig Stk Anlauf: O ruckartig im Betrieb O harte Schläge (z.B. durch Mahlkörper) O ruhiger Lauf O unruhiger Lauf Füllgutaufgabe O gleichmäßig O wenn nicht, welche Schwankungen? Ort, Datum Unterschrift und Firmenstempel

Antrieb

Der Konzernbereich ContiTech ist Entwicklungspartner und Erstausrüster vieler Industrien: mit vielen hochwertigen Funktionsteilen, Komponenten und Systemen. Mit ihrem Know-how in Kautschuk- und Kunststofftechnologie leisten die sieben Geschäftsbereiche einen Beitrag zur sicheren und komfortablen Mobilität. Dafür steht ContiTech.

